计算机科学
注释
正规化(语言学)
杂乱
集合(抽象数据类型)
源代码
人工智能
编码(集合论)
点(几何)
模式识别(心理学)
机器学习
数学
雷达
操作系统
电信
程序设计语言
几何学
作者
Haoqing Li,Jinfu Yang,Yifei Xu,Runshi Wang
标识
DOI:10.1109/lsp.2024.3356411
摘要
Infrared Small Target Detection is a challenging task to separate small targets from infrared clutter background. Recently, deep learning paradigms have achieved promising results. However, these data-driven methods need plenty of manual annotations. Due to the small size of infrared targets, manual annotation consumes more resources and restricts the development of this field. This letter proposed a labor-efficient annotation framework with level set, which obtains a high-quality pseudo mask with only one cursory click. A variational level set formulation with an expectation difference energy functional is designed, in which the zero level contour is intrinsically maintained during the level set evolution. It solves the issue that zero level contour disappearing due to small target size and excessive regularization. Experiments on the NUAA-SIRST and IRSTD-1k datasets demonstrate that our approach achieves superior performance. Code is available at https://github.com/Li-Haoqing/COM.
科研通智能强力驱动
Strongly Powered by AbleSci AI