计算机科学
图形
路径(计算)
药品
图论
理论计算机科学
鉴定(生物学)
机器学习
人工智能
数学
医学
计算机网络
植物
生物
组合数学
精神科
作者
Reza Shami Tanha,Maryam Sadighian,Arash Zabihian,Mohsen Hooshmand,Mohsen Afsharchi
标识
DOI:10.1109/icee59167.2023.10334728
摘要
Computational identification of unknown drug-target interactions (DTI) is crucial in locating new drug treat-ments for proteins, viruses, and diseases. This work proposes MAD-TI a meta-path-based, GAT-oriented method to predict DTIs. Our proposed method uses a heterogeneous graph of drugs, targets, diseases, and side effects as the input graph. Then, it applies two graph attention networks to generate the embeddings of drugs and targets. Using the embeddings, it predicts the unknown DTIs. The results show that MAD-TI outperforms the state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI