Commonality Evaluation and Prediction Study of Light and Small Multi-Rotor UAVs

软件可移植性 计算机科学 转子(电动) 钥匙(锁) 领域(数学) 卷积神经网络 人工智能 系统工程 工业工程 工程类 机械工程 计算机安全 数学 纯数学 程序设计语言
作者
Yongjie Zhang,Yongqi Zeng,Kang Cao
出处
期刊:Drones [MDPI AG]
卷期号:7 (12): 698-698 被引量:1
标识
DOI:10.3390/drones7120698
摘要

Light small-sized, multi-rotor UAVs, with their notable advantages of portability, intelligence, and low cost, occupy a significant share in the civilian UAV market. To further reduce the full lifecycle cost of products, shorten development cycles, and increase market share, some manufacturers of these UAVs have adopted a series development strategy based on the concept of commonality in design. However, there is currently a lack of effective methods to quantify the commonality in UAV designs, which is key to guiding commonality design. In view of this, our study innovatively proposes a new UAV commonality evaluation model based on the basic composition of light small-sized multi-rotor UAVs and the theory of design structure matrices. Through cross-evaluations of four models, the model has been confirmed to comprehensively quantify the degree of commonality between models. To achieve commonality prediction in the early stages of multi-rotor UAV design, we constructed a commonality prediction dataset centered around the commonality evaluation model using data from typical light small-sized multi-rotor UAV models. After training this dataset with convolutional neural networks, we successfully developed an effective predictive model for the commonality of new light small-sized multi-rotor UAV models and verified the feasibility and effectiveness of this method through a case application in UAV design. The commonality evaluation and prediction models established in this study not only provide strong decision-making support for the series design and commonality design of UAV products but also offer new perspectives and tools for strategic development in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啤酒半斤发布了新的文献求助200
刚刚
2秒前
2秒前
bin发布了新的文献求助100
2秒前
鲤鱼依白完成签到 ,获得积分10
2秒前
领导范儿应助十四吉采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
任贱贱完成签到,获得积分20
5秒前
小马甲应助言木禾采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
简单喀秋莎完成签到,获得积分10
8秒前
8秒前
CodeCraft应助菠萝披萨采纳,获得10
8秒前
风趣绿竹完成签到,获得积分10
9秒前
傲娇的秋莲完成签到,获得积分20
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
小明发布了新的文献求助10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
天天快乐应助科研通管家采纳,获得30
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
无花果应助einspringen采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
yu发布了新的文献求助30
10秒前
10秒前
11秒前
Levan完成签到,获得积分10
11秒前
bamboo应助科研通管家采纳,获得20
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
求助人员应助科研通管家采纳,获得30
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
蜉蝣完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667