Commonality Evaluation and Prediction Study of Light and Small Multi-Rotor UAVs

软件可移植性 计算机科学 转子(电动) 钥匙(锁) 领域(数学) 卷积神经网络 人工智能 系统工程 工业工程 工程类 数学 计算机安全 机械工程 程序设计语言 纯数学
作者
Yongjie Zhang,Yongqi Zeng,Kang Cao
出处
期刊:Drones [MDPI AG]
卷期号:7 (12): 698-698 被引量:1
标识
DOI:10.3390/drones7120698
摘要

Light small-sized, multi-rotor UAVs, with their notable advantages of portability, intelligence, and low cost, occupy a significant share in the civilian UAV market. To further reduce the full lifecycle cost of products, shorten development cycles, and increase market share, some manufacturers of these UAVs have adopted a series development strategy based on the concept of commonality in design. However, there is currently a lack of effective methods to quantify the commonality in UAV designs, which is key to guiding commonality design. In view of this, our study innovatively proposes a new UAV commonality evaluation model based on the basic composition of light small-sized multi-rotor UAVs and the theory of design structure matrices. Through cross-evaluations of four models, the model has been confirmed to comprehensively quantify the degree of commonality between models. To achieve commonality prediction in the early stages of multi-rotor UAV design, we constructed a commonality prediction dataset centered around the commonality evaluation model using data from typical light small-sized multi-rotor UAV models. After training this dataset with convolutional neural networks, we successfully developed an effective predictive model for the commonality of new light small-sized multi-rotor UAV models and verified the feasibility and effectiveness of this method through a case application in UAV design. The commonality evaluation and prediction models established in this study not only provide strong decision-making support for the series design and commonality design of UAV products but also offer new perspectives and tools for strategic development in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
江峰发布了新的文献求助10
1秒前
2秒前
今非完成签到,获得积分10
2秒前
风中松鼠发布了新的文献求助10
3秒前
来日方长发布了新的文献求助10
4秒前
古留今完成签到,获得积分10
4秒前
天琴座没有城墙完成签到,获得积分10
5秒前
sdwdw发布了新的文献求助10
5秒前
czp完成签到,获得积分10
6秒前
科研民工发布了新的文献求助10
6秒前
刘刘发布了新的文献求助10
7秒前
乐乐应助pan采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
一只龟龟发布了新的文献求助50
8秒前
小东西完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
哈哈哈发布了新的文献求助10
11秒前
爆米花应助yl采纳,获得10
12秒前
12秒前
乐乐应助飘逸的龙猫采纳,获得10
12秒前
wille发布了新的文献求助10
12秒前
Re完成签到 ,获得积分10
12秒前
丘比特应助AliceCute采纳,获得10
13秒前
haolinyu关注了科研通微信公众号
13秒前
雪落发布了新的文献求助10
14秒前
15秒前
李健应助ZHI采纳,获得10
15秒前
刘岩完成签到,获得积分10
15秒前
QJN完成签到,获得积分10
16秒前
谦让泽洋完成签到 ,获得积分10
16秒前
贾舒涵发布了新的文献求助30
17秒前
科研通AI6.1应助王某采纳,获得10
18秒前
18秒前
虚幻的珩完成签到,获得积分10
19秒前
沉默雅寒发布了新的文献求助30
19秒前
孙温柔应助ZWW--AZIBs采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771037
求助须知:如何正确求助?哪些是违规求助? 5589257
关于积分的说明 15426419
捐赠科研通 4904429
什么是DOI,文献DOI怎么找? 2638747
邀请新用户注册赠送积分活动 1586546
关于科研通互助平台的介绍 1541706