Heteroatom-Coordinated Palladium Molecular Catalysts for Sustainable Electrochemical Production of Hydrogen Peroxide

化学 杂原子 催化作用 选择性 过电位 电化学 电催化剂 过氧化氢 组合化学 无机化学 光化学 有机化学 电极 物理化学 戒指(化学)
作者
Endalkachew Asefa Moges,Chia‐Yu Chang,Wei‐Hsiang Huang,Fikiru Temesgen Angerasa,Keseven Lakshmanan,Teklay Mezgebe Hagos,Habib Gemechu Edao,Woldesenbet Bafe Dilebo,Chi-Wen Pao,Meng‐Che Tsai,Wei‐Nien Su,Bing‐Joe Hwang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (1): 419-429 被引量:21
标识
DOI:10.1021/jacs.3c09644
摘要

Currently, hydrogen peroxide (H2O2) manufacturing involves an energy-intensive anthraquinone technique that demands expensive solvent extraction and a multistep process with substantial energy consumption. In this work, we synthesized Pd–N4-CO, Pd–S4–NCO, and Pd–N2O2–C single-atom catalysts via an in situ synthesis approach involving heteroatom-rich ligands and activated carbon under mild reaction conditions. It reveals that palladium atoms interact strongly with heteroatom-rich ligands, which provide well-defined and uniform active sites for oxygen (O2) electrochemically reduced to hydrogen peroxide. Interestingly, the Pd–N4–CO electrocatalyst shows excellent performance for the electrocatalytic reduction of O2 to H2O2 via a two-electron transfer process in a base electrolyte, exhibiting a negligible amount of onset overpotential and >95% selectivity within a wide range of applied potentials. The electrocatalysts based on the activity and selectivity toward 2e– ORR follow the order Pd–N4–CO > Pd–N2O2–C > Pd–S4–NCO in agreement with the pull–push mechanism, which is the Pd center strongly coordinated with high electronegativity donor atoms (N and O atoms) and weakly coordinated with the intermediate *OOH to excellent selectivity and sustainable production of H2O2. According to density functional theory, Pd–N4 is the active site for selectivity toward H2O2 generation. This work provides an emerging technique for designing high-performance H2O2 electrosynthesis catalysts and the rational integration of several active sites for green and sustainable chemical synthesis via electrochemical processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的战斗机完成签到,获得积分10
刚刚
科研人发布了新的文献求助10
1秒前
hl完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI5应助dingdong采纳,获得10
2秒前
Jasper应助幸福胡萝卜采纳,获得10
2秒前
爱看文献的小羽毛完成签到,获得积分10
2秒前
3秒前
song99发布了新的文献求助10
3秒前
3秒前
juan完成签到 ,获得积分10
3秒前
徐安琪完成签到,获得积分10
4秒前
小蘑菇应助深爱不疑采纳,获得200
4秒前
头发乱了完成签到,获得积分10
4秒前
4秒前
格兰兔米兔完成签到,获得积分10
4秒前
4秒前
4秒前
Luna完成签到 ,获得积分10
5秒前
汪鸡毛发布了新的文献求助10
5秒前
积极寻梅发布了新的文献求助10
6秒前
6秒前
tu发布了新的文献求助30
7秒前
在水一方应助云_123采纳,获得10
7秒前
科研小民工应助晚安采纳,获得50
7秒前
木木完成签到,获得积分10
7秒前
8秒前
8秒前
晨安完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
爆米花应助特兰克斯采纳,获得10
10秒前
11秒前
12秒前
12秒前
13秒前
葛辉辉发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762