Can ChatGPT Kill User-Generated Q&A Platforms?

计算机科学 化学 业务
作者
Jianying Xue,Lizheng Wang,Jinyang Zheng,Yongjun Li,Yong Jie Tan
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4448938
摘要

Large Language Models (LLMs) technology, e.g., ChatGPT, is expected to reshape a broad spectrum of domains. Among them, the impact on user-generated knowledge-sharing (Q&A) communities is of particular interest because such communities are an important learning source of LLMs, and their future changes may affect the sustainable learning of LLMs. This study examines such impact via the natural experiment of ChatGPT's launching. Safe-guided by supporting evidence of parallel trends, a difference-in-difference (DID) analysis suggests the launching trigger an average 2.64% reduction of question-asking on Stack Overflow, confirming a lower-search-cost-enabled substitution. This substitution, however, is not necessarily a threat to the sustainability of knowledge-sharing communities and hence LLMs. The saved search cost may reallocate to asking a smaller set of questions that is more engaging and of higher quality. The increased engagement per question may offset the engagement loss due to fewer questions, and the quality improvement can benefit LLMs' future learning. Our further analysis on the qualitative changes of the questions, however, doesn't favor this hope. While the questions become longer by 2.7% on average and hence more sophisticated, they are less readable and involve less cognition. Those can be questions by nature hard to understand and process by LLMs. A further mechanism analysis shows that users qualitatively adjust their questions to be longer, less readable and less cognitive. The insignificant change in score given by viewers per question also suggests no improvement in the question quality and decreased platform-wide engagement. Our heterogeneity analysis further suggests that new users are more susceptible. Taken together, our paper suggests LLMs may threaten the survival of user-generated knowledge-sharing communities, which may further threaten the sustainable learning and long-run improvement of LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
547发布了新的文献求助10
刚刚
1秒前
SciGPT应助汎影采纳,获得10
2秒前
2秒前
3秒前
现实的迎夏完成签到 ,获得积分10
3秒前
5秒前
lulu2024完成签到,获得积分10
6秒前
菲菲菲菲完成签到,获得积分10
6秒前
JamesPei应助格兰德法泽尔采纳,获得10
10秒前
Hello应助汎影采纳,获得10
10秒前
kana完成签到,获得积分10
10秒前
Yy完成签到,获得积分20
11秒前
12秒前
幽默的南霜关注了科研通微信公众号
12秒前
曾经雪瑶完成签到,获得积分10
13秒前
CodeCraft应助英吹斯挺采纳,获得10
13秒前
善学以致用应助wang采纳,获得10
13秒前
14秒前
CodeCraft应助曾经雪瑶采纳,获得10
16秒前
房山芙完成签到,获得积分10
17秒前
Romina完成签到,获得积分10
18秒前
今后应助汎影采纳,获得10
18秒前
19秒前
谈笑发布了新的文献求助10
20秒前
喝水长肉的小胖子完成签到,获得积分10
20秒前
21秒前
麻辣小龙虾完成签到,获得积分10
21秒前
惊鸿完成签到,获得积分10
22秒前
Frank发布了新的文献求助50
22秒前
22秒前
23秒前
小马甲应助s010w1ngpixy采纳,获得10
25秒前
123发布了新的文献求助10
25秒前
哈哈完成签到 ,获得积分10
25秒前
柳听白发布了新的文献求助30
25秒前
26秒前
科研通AI2S应助lzz采纳,获得10
26秒前
28秒前
izumi发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124688
求助须知:如何正确求助?哪些是违规求助? 2775052
关于积分的说明 7725125
捐赠科研通 2430553
什么是DOI,文献DOI怎么找? 1291228
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323