Can ChatGPT Kill User-Generated Q&A Platforms?

计算机科学 化学 业务
作者
Jianying Xue,Lizheng Wang,Jinyang Zheng,Yongjun Li,Yong Jie Tan
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4448938
摘要

Large Language Models (LLMs) technology, e.g., ChatGPT, is expected to reshape a broad spectrum of domains. Among them, the impact on user-generated knowledge-sharing (Q&A) communities is of particular interest because such communities are an important learning source of LLMs, and their future changes may affect the sustainable learning of LLMs. This study examines such impact via the natural experiment of ChatGPT's launching. Safe-guided by supporting evidence of parallel trends, a difference-in-difference (DID) analysis suggests the launching trigger an average 2.64% reduction of question-asking on Stack Overflow, confirming a lower-search-cost-enabled substitution. This substitution, however, is not necessarily a threat to the sustainability of knowledge-sharing communities and hence LLMs. The saved search cost may reallocate to asking a smaller set of questions that is more engaging and of higher quality. The increased engagement per question may offset the engagement loss due to fewer questions, and the quality improvement can benefit LLMs' future learning. Our further analysis on the qualitative changes of the questions, however, doesn't favor this hope. While the questions become longer by 2.7% on average and hence more sophisticated, they are less readable and involve less cognition. Those can be questions by nature hard to understand and process by LLMs. A further mechanism analysis shows that users qualitatively adjust their questions to be longer, less readable and less cognitive. The insignificant change in score given by viewers per question also suggests no improvement in the question quality and decreased platform-wide engagement. Our heterogeneity analysis further suggests that new users are more susceptible. Taken together, our paper suggests LLMs may threaten the survival of user-generated knowledge-sharing communities, which may further threaten the sustainable learning and long-run improvement of LLMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
稳重的雨灵完成签到,获得积分10
1秒前
帅气鹰完成签到,获得积分10
1秒前
洁净的雪青完成签到,获得积分10
1秒前
zhangyida完成签到,获得积分10
1秒前
Akim应助鱼儿采纳,获得10
2秒前
黎小静完成签到,获得积分10
2秒前
随风发布了新的文献求助10
2秒前
孤独丹秋发布了新的文献求助10
2秒前
LiuKangwei完成签到,获得积分10
2秒前
xue发布了新的文献求助10
2秒前
胡俊完成签到,获得积分20
3秒前
共享精神应助杨朝进采纳,获得10
3秒前
3秒前
123发布了新的文献求助10
4秒前
大乐发布了新的文献求助10
4秒前
5秒前
桐桐应助调皮的皓轩采纳,获得10
5秒前
mimi完成签到,获得积分20
5秒前
赘婿应助细心的雪晴采纳,获得30
5秒前
魔幻若血发布了新的文献求助10
6秒前
好名字发布了新的文献求助10
6秒前
6秒前
隐形曼青应助柒七采纳,获得10
6秒前
7秒前
7秒前
文静的飞飞完成签到 ,获得积分10
7秒前
小马甲应助RR采纳,获得10
7秒前
8秒前
8秒前
科研通AI6应助末鸭梨采纳,获得10
8秒前
8秒前
美年达发布了新的文献求助10
10秒前
儒雅的十八完成签到,获得积分10
10秒前
hyphen完成签到,获得积分10
10秒前
necessaryman发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
随风完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546309
求助须知:如何正确求助?哪些是违规求助? 4632193
关于积分的说明 14625447
捐赠科研通 4573861
什么是DOI,文献DOI怎么找? 2507851
邀请新用户注册赠送积分活动 1484503
关于科研通互助平台的介绍 1455714