Can ChatGPT Kill User-Generated Q&A Platforms?

计算机科学 化学 业务
作者
Jianying Xue,Lizheng Wang,Jinyang Zheng,Yongjun Li,Yong Jie Tan
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4448938
摘要

Large Language Models (LLMs) technology, e.g., ChatGPT, is expected to reshape a broad spectrum of domains. Among them, the impact on user-generated knowledge-sharing (Q&A) communities is of particular interest because such communities are an important learning source of LLMs, and their future changes may affect the sustainable learning of LLMs. This study examines such impact via the natural experiment of ChatGPT's launching. Safe-guided by supporting evidence of parallel trends, a difference-in-difference (DID) analysis suggests the launching trigger an average 2.64% reduction of question-asking on Stack Overflow, confirming a lower-search-cost-enabled substitution. This substitution, however, is not necessarily a threat to the sustainability of knowledge-sharing communities and hence LLMs. The saved search cost may reallocate to asking a smaller set of questions that is more engaging and of higher quality. The increased engagement per question may offset the engagement loss due to fewer questions, and the quality improvement can benefit LLMs' future learning. Our further analysis on the qualitative changes of the questions, however, doesn't favor this hope. While the questions become longer by 2.7% on average and hence more sophisticated, they are less readable and involve less cognition. Those can be questions by nature hard to understand and process by LLMs. A further mechanism analysis shows that users qualitatively adjust their questions to be longer, less readable and less cognitive. The insignificant change in score given by viewers per question also suggests no improvement in the question quality and decreased platform-wide engagement. Our heterogeneity analysis further suggests that new users are more susceptible. Taken together, our paper suggests LLMs may threaten the survival of user-generated knowledge-sharing communities, which may further threaten the sustainable learning and long-run improvement of LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理雅容发布了新的文献求助10
1秒前
Hello应助勤劳的鸡采纳,获得10
1秒前
3秒前
jjj应助大佬采纳,获得20
3秒前
smin发布了新的文献求助10
3秒前
无限小珍发布了新的文献求助10
3秒前
科目三应助后来采纳,获得10
4秒前
wiwi发布了新的文献求助30
4秒前
5秒前
4712发布了新的文献求助10
5秒前
思源应助狸花小喵采纳,获得10
5秒前
小平发布了新的文献求助10
6秒前
6秒前
华仔应助g123采纳,获得10
6秒前
8秒前
9秒前
可爱的函函应助二东采纳,获得10
9秒前
三愿完成签到,获得积分10
9秒前
sanmu完成签到,获得积分10
10秒前
合适绮波发布了新的文献求助10
10秒前
10秒前
facaihua完成签到,获得积分10
10秒前
10秒前
4712完成签到,获得积分10
11秒前
11秒前
欣慰小蕊完成签到,获得积分10
12秒前
伶俐的柚子完成签到,获得积分10
12秒前
14秒前
15秒前
15秒前
15秒前
wq发布了新的文献求助30
15秒前
坦率的匪应助乌漆嘛黑采纳,获得10
15秒前
坦率的匪应助小刘采纳,获得10
16秒前
曾经绿兰完成签到,获得积分10
16秒前
16秒前
cola发布了新的文献求助10
16秒前
www完成签到 ,获得积分10
16秒前
Rondab应助墨羽采纳,获得10
17秒前
合适绮波完成签到,获得积分10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113