重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Can ChatGPT Kill User-Generated Q&A Platforms?

计算机科学 化学 业务
作者
Jianying Xue,Lizheng Wang,Jinyang Zheng,Yongjun Li,Yong Jie Tan
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4448938
摘要

Large Language Models (LLMs) technology, e.g., ChatGPT, is expected to reshape a broad spectrum of domains. Among them, the impact on user-generated knowledge-sharing (Q&A) communities is of particular interest because such communities are an important learning source of LLMs, and their future changes may affect the sustainable learning of LLMs. This study examines such impact via the natural experiment of ChatGPT's launching. Safe-guided by supporting evidence of parallel trends, a difference-in-difference (DID) analysis suggests the launching trigger an average 2.64% reduction of question-asking on Stack Overflow, confirming a lower-search-cost-enabled substitution. This substitution, however, is not necessarily a threat to the sustainability of knowledge-sharing communities and hence LLMs. The saved search cost may reallocate to asking a smaller set of questions that is more engaging and of higher quality. The increased engagement per question may offset the engagement loss due to fewer questions, and the quality improvement can benefit LLMs' future learning. Our further analysis on the qualitative changes of the questions, however, doesn't favor this hope. While the questions become longer by 2.7% on average and hence more sophisticated, they are less readable and involve less cognition. Those can be questions by nature hard to understand and process by LLMs. A further mechanism analysis shows that users qualitatively adjust their questions to be longer, less readable and less cognitive. The insignificant change in score given by viewers per question also suggests no improvement in the question quality and decreased platform-wide engagement. Our heterogeneity analysis further suggests that new users are more susceptible. Taken together, our paper suggests LLMs may threaten the survival of user-generated knowledge-sharing communities, which may further threaten the sustainable learning and long-run improvement of LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
语芙发布了新的文献求助10
刚刚
虞头星星完成签到 ,获得积分10
1秒前
sy发布了新的文献求助10
1秒前
1秒前
momo发布了新的文献求助10
2秒前
snowwww完成签到,获得积分10
2秒前
充电宝应助缓慢怜翠采纳,获得10
2秒前
2秒前
hcmsaobang2001完成签到,获得积分10
2秒前
2秒前
2秒前
无限幻枫发布了新的文献求助10
3秒前
Akim应助zhuchenglu采纳,获得10
3秒前
镘淳发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
wanci应助Ren采纳,获得10
4秒前
4秒前
香蕉梨愁发布了新的文献求助10
4秒前
一支得卦完成签到,获得积分10
4秒前
May发布了新的文献求助10
4秒前
keyanqianjin发布了新的文献求助10
5秒前
溯溯发布了新的文献求助10
5秒前
5秒前
5秒前
si完成签到,获得积分10
5秒前
6秒前
6秒前
传奇3应助我是聪聪呦采纳,获得10
7秒前
合适的秋白完成签到,获得积分10
7秒前
one发布了新的文献求助10
7秒前
believe发布了新的文献求助10
8秒前
Owen应助llm的同桌采纳,获得10
8秒前
xyzlancet发布了新的文献求助10
8秒前
ents发布了新的文献求助10
8秒前
8秒前
ljq发布了新的文献求助10
8秒前
小青椒应助一支得卦采纳,获得30
9秒前
无情书萱发布了新的文献求助30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605