A selective feature optimized multi-sensor based e-nose system detecting illegal drugs validated in diverse laboratory conditions

计算机科学 稳健性(进化) 电子鼻 探测器 毒品检测 人工智能 模式识别(心理学) 实时计算 化学 色谱法 生物化学 电信 基因
作者
Hyung Wook Noh,Yongwon Jang,Hwin Dol Park,Dohyeun kim,Jae Hun Choi,Chang-Geun Ahn
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:390: 133965-133965
标识
DOI:10.1016/j.snb.2023.133965
摘要

Detecting illegal drugs, such as cannabis and methamphetamine, with high accuracy and speed is a complex problem that requires an innovative solution. To address this challenge, we propose a new method that utilizes a newly developed electronic nose (e-nose) system with an unprecedented total of 56 sensors, including four different types: metal-oxide-semiconductor (MOS), electrochemical (EC), non-dispersive infrared (NDIR), and photoionization detector (PID). Previous studies on gas sensors have typically validated results in a single controlled laboratory condition. In contrast, our study evaluated the performance of our system in different environments from the original training setting. To evaluate the detection performance of our system in unfamiliar environments and its robustness, we diluted the drug gas with normal air from six different laboratory environments. In addition, we evaluated the detection accuracy of our method using forward-feature selection, which allowed us to evaluate the impact of different combinations of sensors. By selectively optimizing sensors based on their ability to capture unique features of different drugs, our proposed method reduced the number of optimal sensors to less than half of 56 (24 selected). The proposed method achieved a detection accuracy of 93.03% and reduced the error rate from 12.23% to 6.97% using 5166 datasets including cannabis, methamphetamine, and tobacco. Our research not only provides rapid and enhanced accuracy, but also has the potential to be an effective tool for detecting illegal drugs in various settings, which could greatly contribute to strengthening national and social security.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助寒江雪采纳,获得10
1秒前
1秒前
1秒前
丘比特应助憨憨采纳,获得10
2秒前
4秒前
ino发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
6秒前
AQI发布了新的文献求助10
7秒前
9秒前
炽天使发布了新的文献求助10
9秒前
李飞发布了新的文献求助30
9秒前
科研通AI6应助娇娇尔采纳,获得10
10秒前
曹杨磊完成签到,获得积分10
10秒前
sssss完成签到 ,获得积分10
10秒前
10秒前
萱棚发布了新的文献求助10
10秒前
小值钱完成签到,获得积分10
11秒前
13秒前
筱芯爱上神完成签到 ,获得积分10
13秒前
14秒前
寒江雪发布了新的文献求助10
15秒前
17秒前
17秒前
18秒前
18秒前
盼盼完成签到,获得积分20
18秒前
19秒前
贾明阳发布了新的文献求助10
21秒前
22秒前
盼盼发布了新的文献求助10
22秒前
wuliqun发布了新的文献求助10
22秒前
Seven完成签到 ,获得积分10
22秒前
23秒前
浮游应助石头采纳,获得10
24秒前
野性的寒荷完成签到,获得积分10
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402