A selective feature optimized multi-sensor based e-nose system detecting illegal drugs validated in diverse laboratory conditions

计算机科学 稳健性(进化) 电子鼻 探测器 毒品检测 人工智能 模式识别(心理学) 实时计算 化学 色谱法 生物化学 电信 基因
作者
Hyung Wook Noh,Yongwon Jang,Hwin Dol Park,Dohyeun kim,Jae Hun Choi,Chang-Geun Ahn
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:390: 133965-133965
标识
DOI:10.1016/j.snb.2023.133965
摘要

Detecting illegal drugs, such as cannabis and methamphetamine, with high accuracy and speed is a complex problem that requires an innovative solution. To address this challenge, we propose a new method that utilizes a newly developed electronic nose (e-nose) system with an unprecedented total of 56 sensors, including four different types: metal-oxide-semiconductor (MOS), electrochemical (EC), non-dispersive infrared (NDIR), and photoionization detector (PID). Previous studies on gas sensors have typically validated results in a single controlled laboratory condition. In contrast, our study evaluated the performance of our system in different environments from the original training setting. To evaluate the detection performance of our system in unfamiliar environments and its robustness, we diluted the drug gas with normal air from six different laboratory environments. In addition, we evaluated the detection accuracy of our method using forward-feature selection, which allowed us to evaluate the impact of different combinations of sensors. By selectively optimizing sensors based on their ability to capture unique features of different drugs, our proposed method reduced the number of optimal sensors to less than half of 56 (24 selected). The proposed method achieved a detection accuracy of 93.03% and reduced the error rate from 12.23% to 6.97% using 5166 datasets including cannabis, methamphetamine, and tobacco. Our research not only provides rapid and enhanced accuracy, but also has the potential to be an effective tool for detecting illegal drugs in various settings, which could greatly contribute to strengthening national and social security.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dxc发布了新的文献求助10
刚刚
CYC发布了新的文献求助10
刚刚
小蘑菇应助Dash采纳,获得10
2秒前
科研的牲口完成签到,获得积分20
3秒前
柏林寒冬应助三石采纳,获得10
4秒前
4秒前
Chuwei完成签到 ,获得积分10
5秒前
科研通AI6应助瓦松采纳,获得10
5秒前
6秒前
风味土豆片完成签到,获得积分10
6秒前
6秒前
oc666888发布了新的文献求助10
7秒前
兔子完成签到,获得积分10
7秒前
王博涵发布了新的文献求助10
8秒前
小马甲应助尧羲采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
玉襄完成签到,获得积分10
10秒前
10秒前
lisaltp完成签到 ,获得积分10
11秒前
孤独如曼发布了新的文献求助10
11秒前
欧克发布了新的文献求助30
11秒前
12秒前
13秒前
CRC完成签到,获得积分10
14秒前
白熊完成签到 ,获得积分10
15秒前
逗号完成签到,获得积分0
15秒前
17秒前
xyi发布了新的文献求助10
18秒前
白日焰火完成签到 ,获得积分10
18秒前
loong发布了新的文献求助10
18秒前
billows发布了新的文献求助10
18秒前
20秒前
成就的蓝完成签到,获得积分10
20秒前
小男孩发布了新的文献求助10
21秒前
体贴怜翠完成签到,获得积分10
21秒前
21秒前
嘿嘿嘿嘿完成签到,获得积分20
22秒前
欧克完成签到,获得积分20
22秒前
司佳雨完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539766
求助须知:如何正确求助?哪些是违规求助? 4626494
关于积分的说明 14599642
捐赠科研通 4567376
什么是DOI,文献DOI怎么找? 2504034
邀请新用户注册赠送积分活动 1481742
关于科研通互助平台的介绍 1453369