亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A selective feature optimized multi-sensor based e-nose system detecting illegal drugs validated in diverse laboratory conditions

计算机科学 稳健性(进化) 电子鼻 探测器 毒品检测 人工智能 模式识别(心理学) 实时计算 化学 色谱法 生物化学 电信 基因
作者
Hyung Wook Noh,Yongwon Jang,Hwin Dol Park,Dohyeun kim,Jae Hun Choi,Chang-Geun Ahn
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:390: 133965-133965
标识
DOI:10.1016/j.snb.2023.133965
摘要

Detecting illegal drugs, such as cannabis and methamphetamine, with high accuracy and speed is a complex problem that requires an innovative solution. To address this challenge, we propose a new method that utilizes a newly developed electronic nose (e-nose) system with an unprecedented total of 56 sensors, including four different types: metal-oxide-semiconductor (MOS), electrochemical (EC), non-dispersive infrared (NDIR), and photoionization detector (PID). Previous studies on gas sensors have typically validated results in a single controlled laboratory condition. In contrast, our study evaluated the performance of our system in different environments from the original training setting. To evaluate the detection performance of our system in unfamiliar environments and its robustness, we diluted the drug gas with normal air from six different laboratory environments. In addition, we evaluated the detection accuracy of our method using forward-feature selection, which allowed us to evaluate the impact of different combinations of sensors. By selectively optimizing sensors based on their ability to capture unique features of different drugs, our proposed method reduced the number of optimal sensors to less than half of 56 (24 selected). The proposed method achieved a detection accuracy of 93.03% and reduced the error rate from 12.23% to 6.97% using 5166 datasets including cannabis, methamphetamine, and tobacco. Our research not only provides rapid and enhanced accuracy, but also has the potential to be an effective tool for detecting illegal drugs in various settings, which could greatly contribute to strengthening national and social security.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
akram123发布了新的文献求助10
2秒前
完美世界应助liutao采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
27秒前
曲线发布了新的文献求助10
30秒前
缓慢逍遥完成签到 ,获得积分10
34秒前
赘婿应助Ade107采纳,获得10
34秒前
科研启动发布了新的文献求助10
37秒前
44秒前
lele发布了新的文献求助10
48秒前
曲线完成签到,获得积分10
1分钟前
科研通AI6应助zhdhh采纳,获得10
1分钟前
无奈的靖仇完成签到,获得积分10
1分钟前
1分钟前
1分钟前
呼延水云发布了新的文献求助10
1分钟前
要减肥的胖子应助周周采纳,获得10
1分钟前
1分钟前
科研通AI6应助George采纳,获得10
2分钟前
斯文败类应助Aurora采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
2分钟前
Ade107发布了新的文献求助10
2分钟前
2分钟前
宓广缘完成签到 ,获得积分10
2分钟前
应寒年完成签到 ,获得积分10
2分钟前
Ava应助靓丽的珊珊采纳,获得10
2分钟前
2分钟前
2分钟前
carols发布了新的文献求助10
2分钟前
小马甲应助Ade107采纳,获得10
2分钟前
Thi发布了新的文献求助10
2分钟前
靓丽衫完成签到 ,获得积分10
2分钟前
qiuzhiri完成签到,获得积分10
2分钟前
小二郎应助George采纳,获得10
2分钟前
2分钟前
3分钟前
在水一方应助qiuzhiri采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639537
求助须知:如何正确求助?哪些是违规求助? 4748939
关于积分的说明 15006656
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563741
邀请新用户注册赠送积分活动 1522710
关于科研通互助平台的介绍 1482425