A selective feature optimized multi-sensor based e-nose system detecting illegal drugs validated in diverse laboratory conditions

计算机科学 稳健性(进化) 电子鼻 探测器 毒品检测 人工智能 模式识别(心理学) 实时计算 化学 色谱法 生物化学 电信 基因
作者
Hyung Wook Noh,Yongwon Jang,Hwin Dol Park,Dohyeun kim,Jae Hun Choi,Chang-Geun Ahn
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:390: 133965-133965
标识
DOI:10.1016/j.snb.2023.133965
摘要

Detecting illegal drugs, such as cannabis and methamphetamine, with high accuracy and speed is a complex problem that requires an innovative solution. To address this challenge, we propose a new method that utilizes a newly developed electronic nose (e-nose) system with an unprecedented total of 56 sensors, including four different types: metal-oxide-semiconductor (MOS), electrochemical (EC), non-dispersive infrared (NDIR), and photoionization detector (PID). Previous studies on gas sensors have typically validated results in a single controlled laboratory condition. In contrast, our study evaluated the performance of our system in different environments from the original training setting. To evaluate the detection performance of our system in unfamiliar environments and its robustness, we diluted the drug gas with normal air from six different laboratory environments. In addition, we evaluated the detection accuracy of our method using forward-feature selection, which allowed us to evaluate the impact of different combinations of sensors. By selectively optimizing sensors based on their ability to capture unique features of different drugs, our proposed method reduced the number of optimal sensors to less than half of 56 (24 selected). The proposed method achieved a detection accuracy of 93.03% and reduced the error rate from 12.23% to 6.97% using 5166 datasets including cannabis, methamphetamine, and tobacco. Our research not only provides rapid and enhanced accuracy, but also has the potential to be an effective tool for detecting illegal drugs in various settings, which could greatly contribute to strengthening national and social security.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助月亮不知道采纳,获得20
刚刚
1秒前
maclogos发布了新的文献求助10
1秒前
叹千泠发布了新的文献求助30
1秒前
hd完成签到,获得积分10
2秒前
2秒前
2秒前
共享精神应助微风往事采纳,获得10
2秒前
好想睡觉发布了新的文献求助10
2秒前
迷路赛君完成签到,获得积分10
3秒前
3秒前
大大完成签到,获得积分10
3秒前
文艺如凡完成签到,获得积分10
3秒前
雷家完成签到,获得积分10
3秒前
3秒前
闪闪的完成签到,获得积分20
3秒前
卷心菜发布了新的文献求助10
3秒前
深情安青应助Atopos采纳,获得10
3秒前
噗咔咔ya完成签到 ,获得积分10
3秒前
Hello应助Haoyun采纳,获得10
3秒前
顺心夜南应助miao采纳,获得20
4秒前
重楼远志发布了新的文献求助100
4秒前
李健应助LDD采纳,获得10
4秒前
ding应助冷酷的松思采纳,获得10
4秒前
momo19完成签到,获得积分10
4秒前
lijunying完成签到,获得积分10
4秒前
alan完成签到,获得积分10
5秒前
5秒前
奇异果果完成签到,获得积分10
6秒前
任小萱完成签到,获得积分10
6秒前
南瓜猫发布了新的文献求助10
6秒前
ginkgoleaf发布了新的文献求助10
6秒前
6秒前
Una完成签到,获得积分10
7秒前
p65完成签到,获得积分10
7秒前
yangmingyu发布了新的文献求助10
7秒前
义气莫茗完成签到 ,获得积分10
7秒前
Zx_1993应助勤奋太君采纳,获得20
7秒前
小包完成签到,获得积分10
7秒前
小何爱学习完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005