A selective feature optimized multi-sensor based e-nose system detecting illegal drugs validated in diverse laboratory conditions

计算机科学 稳健性(进化) 电子鼻 探测器 毒品检测 人工智能 模式识别(心理学) 实时计算 化学 色谱法 生物化学 电信 基因
作者
Hyung Wook Noh,Yongwon Jang,Hwin Dol Park,Dohyeun kim,Jae Hun Choi,Chang-Geun Ahn
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:390: 133965-133965
标识
DOI:10.1016/j.snb.2023.133965
摘要

Detecting illegal drugs, such as cannabis and methamphetamine, with high accuracy and speed is a complex problem that requires an innovative solution. To address this challenge, we propose a new method that utilizes a newly developed electronic nose (e-nose) system with an unprecedented total of 56 sensors, including four different types: metal-oxide-semiconductor (MOS), electrochemical (EC), non-dispersive infrared (NDIR), and photoionization detector (PID). Previous studies on gas sensors have typically validated results in a single controlled laboratory condition. In contrast, our study evaluated the performance of our system in different environments from the original training setting. To evaluate the detection performance of our system in unfamiliar environments and its robustness, we diluted the drug gas with normal air from six different laboratory environments. In addition, we evaluated the detection accuracy of our method using forward-feature selection, which allowed us to evaluate the impact of different combinations of sensors. By selectively optimizing sensors based on their ability to capture unique features of different drugs, our proposed method reduced the number of optimal sensors to less than half of 56 (24 selected). The proposed method achieved a detection accuracy of 93.03% and reduced the error rate from 12.23% to 6.97% using 5166 datasets including cannabis, methamphetamine, and tobacco. Our research not only provides rapid and enhanced accuracy, but also has the potential to be an effective tool for detecting illegal drugs in various settings, which could greatly contribute to strengthening national and social security.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想有所成完成签到,获得积分20
刚刚
无奈的平文完成签到 ,获得积分10
刚刚
小蘑菇应助简单若云采纳,获得10
刚刚
白泽发布了新的文献求助10
1秒前
1秒前
铭心完成签到,获得积分10
1秒前
刘永红发布了新的文献求助10
2秒前
2秒前
顺心的翠丝完成签到 ,获得积分10
2秒前
nn发布了新的文献求助10
3秒前
想有所成发布了新的文献求助10
3秒前
4秒前
哩哩发布了新的文献求助10
4秒前
weberk完成签到,获得积分10
4秒前
打打应助限量版小祸害采纳,获得30
5秒前
7秒前
?.?完成签到 ,获得积分10
7秒前
8秒前
脑洞疼应助刘永红采纳,获得10
8秒前
柔弱绝施完成签到,获得积分10
8秒前
白小白发布了新的文献求助10
9秒前
雨歌发布了新的文献求助10
9秒前
9秒前
WROBTY发布了新的文献求助10
10秒前
10秒前
12秒前
14秒前
zzzzz关注了科研通微信公众号
14秒前
动听紫文发布了新的文献求助50
14秒前
ZJX应助能干的寒凡采纳,获得10
16秒前
16秒前
kwai发布了新的文献求助30
17秒前
乐观伟诚发布了新的文献求助10
18秒前
暴走小面包完成签到,获得积分10
19秒前
汉堡包应助暖暖采纳,获得10
19秒前
YIYI完成签到,获得积分10
19秒前
Jaime完成签到,获得积分10
19秒前
ChenYX发布了新的文献求助30
20秒前
20秒前
下次一定完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299791
求助须知:如何正确求助?哪些是违规求助? 4447880
关于积分的说明 13844002
捐赠科研通 4333488
什么是DOI,文献DOI怎么找? 2378859
邀请新用户注册赠送积分活动 1374089
关于科研通互助平台的介绍 1339658