Federated deep transfer learning for EEG decoding using multiple BCI tasks

计算机科学 解码方法 学习迁移 脑-机接口 深度学习 人工智能 联营 可扩展性 机器学习 脑电图 数据库 心理学 电信 精神科
作者
Xiang Wei,A. Aldo Faisal
标识
DOI:10.1109/ner52421.2023.10123713
摘要

Deep learning is the state-of-the-art in BCI decoding. However, it is very data-hungry and training decoders requires pooling data from multiple sources. EEG data from various sources decrease the decoding performance due to negative transfer [1]. Recently, transfer learning for EEG decoding has been suggested as a remedy [2], [3] and become subject to recent BCI competitions (e.g. BEETL [4]), but there are two complications in combining data from many subjects. First, privacy is not protected as highly personal brain data needs to be shared (and copied across increasingly tight information governance boundaries). Moreover, BCI data are collected from different sources and are often with different BCI tasks, which has been thought to limit their reusability. Here, we demonstrate a federated deep transfer learning technique, the Multi-dataset Federated Separate-Common-Separate Network (MF-SCSN) based on our previous work of SCSN [1], which integrates privacy-preserving properties into deep transfer learning to utilise data sets with different tasks. This framework trains a BCI decoder using different source data sets from different imagery tasks (e.g. some data sets with hands and feet, vs others with single hands and tongue, etc). Therefore, by introducing privacy-preserving transfer learning techniques, we unlock the reusability and scalability of existing BCI data sets. We evaluated our federated transfer learning method on the NeurIPS 2021 BEETL competition BCI task. The proposed architecture outperformed the baseline decoder by 3%. Moreover, compared with the baseline and other transfer learning algorithms, our method protects the privacy of the brain data from different data centres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
huahua完成签到,获得积分10
1秒前
英俊的铭应助dry采纳,获得10
2秒前
小橘完成签到,获得积分10
3秒前
3秒前
琥1完成签到,获得积分10
3秒前
maguodrgon发布了新的文献求助10
4秒前
虚幻的亦旋完成签到,获得积分10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
Babytucky发布了新的文献求助10
7秒前
柴鱼完成签到,获得积分10
9秒前
零琳完成签到 ,获得积分20
10秒前
雪王完成签到,获得积分10
10秒前
11秒前
11秒前
NexusExplorer应助炫彩小陈采纳,获得10
11秒前
14秒前
顾矜应助mds采纳,获得10
16秒前
17秒前
kaier完成签到 ,获得积分0
18秒前
18秒前
19秒前
20秒前
zhuwei完成签到,获得积分10
21秒前
希音发布了新的文献求助10
21秒前
huahua发布了新的文献求助10
22秒前
小鹿呀完成签到,获得积分10
22秒前
23秒前
crescent发布了新的文献求助20
24秒前
25秒前
Babytucky完成签到,获得积分20
25秒前
卜念发布了新的文献求助10
25秒前
正版DY完成签到,获得积分10
26秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
终归发布了新的文献求助10
27秒前
27秒前
27秒前
小二郎应助整齐的尔阳采纳,获得10
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514