Federated deep transfer learning for EEG decoding using multiple BCI tasks

计算机科学 解码方法 学习迁移 脑-机接口 深度学习 人工智能 联营 可扩展性 机器学习 脑电图 数据库 心理学 电信 精神科
作者
Xiang Wei,A. Aldo Faisal
标识
DOI:10.1109/ner52421.2023.10123713
摘要

Deep learning is the state-of-the-art in BCI decoding. However, it is very data-hungry and training decoders requires pooling data from multiple sources. EEG data from various sources decrease the decoding performance due to negative transfer [1]. Recently, transfer learning for EEG decoding has been suggested as a remedy [2], [3] and become subject to recent BCI competitions (e.g. BEETL [4]), but there are two complications in combining data from many subjects. First, privacy is not protected as highly personal brain data needs to be shared (and copied across increasingly tight information governance boundaries). Moreover, BCI data are collected from different sources and are often with different BCI tasks, which has been thought to limit their reusability. Here, we demonstrate a federated deep transfer learning technique, the Multi-dataset Federated Separate-Common-Separate Network (MF-SCSN) based on our previous work of SCSN [1], which integrates privacy-preserving properties into deep transfer learning to utilise data sets with different tasks. This framework trains a BCI decoder using different source data sets from different imagery tasks (e.g. some data sets with hands and feet, vs others with single hands and tongue, etc). Therefore, by introducing privacy-preserving transfer learning techniques, we unlock the reusability and scalability of existing BCI data sets. We evaluated our federated transfer learning method on the NeurIPS 2021 BEETL competition BCI task. The proposed architecture outperformed the baseline decoder by 3%. Moreover, compared with the baseline and other transfer learning algorithms, our method protects the privacy of the brain data from different data centres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俗丨完成签到,获得积分10
1秒前
1秒前
Rsoup发布了新的文献求助10
1秒前
领导范儿应助Promise采纳,获得10
2秒前
小周发布了新的文献求助10
2秒前
开整吧完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
orixero应助希希采纳,获得10
5秒前
大胆妖精发布了新的文献求助10
6秒前
qqqyy完成签到,获得积分0
6秒前
水水加油完成签到 ,获得积分10
7秒前
why11starry发布了新的文献求助10
8秒前
10秒前
11秒前
骤雨时晴完成签到 ,获得积分10
11秒前
酷波er应助唠叨的又菡采纳,获得10
13秒前
双吉芝士堡完成签到,获得积分10
13秒前
14秒前
15秒前
Orange应助Y橙子采纳,获得10
15秒前
16秒前
成天睡大觉完成签到,获得积分10
17秒前
21秒前
22秒前
小张发布了新的文献求助10
22秒前
24秒前
24秒前
英姑应助椰子采纳,获得10
25秒前
25秒前
25秒前
25秒前
26秒前
27秒前
赘婿应助yyy采纳,获得10
27秒前
zyq发布了新的文献求助10
27秒前
jikaku发布了新的文献求助10
28秒前
28秒前
zhaoshao完成签到,获得积分10
29秒前
mengdewen发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337