Federated deep transfer learning for EEG decoding using multiple BCI tasks

计算机科学 解码方法 学习迁移 脑-机接口 深度学习 人工智能 联营 可扩展性 机器学习 脑电图 数据库 心理学 电信 精神科
作者
Xiang Wei,A. Aldo Faisal
标识
DOI:10.1109/ner52421.2023.10123713
摘要

Deep learning is the state-of-the-art in BCI decoding. However, it is very data-hungry and training decoders requires pooling data from multiple sources. EEG data from various sources decrease the decoding performance due to negative transfer [1]. Recently, transfer learning for EEG decoding has been suggested as a remedy [2], [3] and become subject to recent BCI competitions (e.g. BEETL [4]), but there are two complications in combining data from many subjects. First, privacy is not protected as highly personal brain data needs to be shared (and copied across increasingly tight information governance boundaries). Moreover, BCI data are collected from different sources and are often with different BCI tasks, which has been thought to limit their reusability. Here, we demonstrate a federated deep transfer learning technique, the Multi-dataset Federated Separate-Common-Separate Network (MF-SCSN) based on our previous work of SCSN [1], which integrates privacy-preserving properties into deep transfer learning to utilise data sets with different tasks. This framework trains a BCI decoder using different source data sets from different imagery tasks (e.g. some data sets with hands and feet, vs others with single hands and tongue, etc). Therefore, by introducing privacy-preserving transfer learning techniques, we unlock the reusability and scalability of existing BCI data sets. We evaluated our federated transfer learning method on the NeurIPS 2021 BEETL competition BCI task. The proposed architecture outperformed the baseline decoder by 3%. Moreover, compared with the baseline and other transfer learning algorithms, our method protects the privacy of the brain data from different data centres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆黑猫发布了新的文献求助10
刚刚
简柠完成签到,获得积分10
刚刚
旧城以西完成签到,获得积分10
刚刚
Alvienan完成签到,获得积分10
刚刚
刚刚
刚刚
霸王龙完成签到,获得积分10
刚刚
刚刚
孝顺的青枫完成签到,获得积分10
1秒前
我是125完成签到,获得积分10
1秒前
mklwxhlsd完成签到,获得积分10
1秒前
十一发布了新的文献求助10
1秒前
谦让的傲芙完成签到,获得积分10
2秒前
陶醉小笼包完成签到 ,获得积分10
2秒前
Yang完成签到,获得积分10
2秒前
2秒前
wmt完成签到,获得积分10
2秒前
Esther完成签到 ,获得积分10
3秒前
修越完成签到,获得积分20
3秒前
浩浩桑发布了新的文献求助10
4秒前
4秒前
rwj发布了新的文献求助10
4秒前
fighting完成签到 ,获得积分10
4秒前
搜集达人应助CT采纳,获得10
4秒前
5秒前
果实发布了新的文献求助10
5秒前
fan完成签到,获得积分20
5秒前
阿白完成签到 ,获得积分10
6秒前
小轩窗zst完成签到,获得积分10
6秒前
王川完成签到,获得积分10
6秒前
一方完成签到,获得积分10
6秒前
aqaqaqa发布了新的文献求助10
6秒前
英姑应助大月儿采纳,获得10
7秒前
灵巧的以亦完成签到,获得积分10
7秒前
7秒前
安沁完成签到,获得积分10
8秒前
April完成签到,获得积分10
10秒前
pp发布了新的文献求助10
10秒前
清脆惜寒发布了新的文献求助10
10秒前
eric888应助果实采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723