OSGNN: Original graph and Subgraph aggregated Graph Neural Network

计算机科学 理论计算机科学 图形 同种类的 因子临界图 嵌入 图因式分解 折线图 电压图 人工智能 数学 组合数学
作者
Yeyu Yan,Chao Li,Yanwei Yu,Xiangju Li,Zhongying Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120115-120115 被引量:5
标识
DOI:10.1016/j.eswa.2023.120115
摘要

Heterogeneous Graph Embedding (HGE) is receiving a great attention from researchers, as it can be widely and effectively used to solve problems from various real-world applications. The existing HGE models mainly learn node representation directly on the whole heterogeneous graph by aggregating neighboring information, which unavoidably leads to the loss of useful high-order information. Another mainstream is to split heterogeneous graphs into different homogeneous subgraphs and then learn representations separately. However, this isolated handling way is prone to the loss of important interactions between the nodes of the same type. To address the above challenging but interesting problems, we propose an Original graph and Subgraph aggregated Graph Neural Network (OSGNN). Specifically, we first split the original heterogeneous graph into several subgraphs, and then weighted combine them to get a new meaningful homogeneous graph. Finally, the first-order and high-order information of the target node are learned from the original heterogeneous graph and the homogeneous subgraph respectively and concatenated as the final node representation. Extensive experiments on three real-world heterogeneous graphs demonstrate that the proposed framework significantly outperforms the state-of-the-art methods. The source codes of this work are available on https://github.com/ZZY-GraphMiningLab/OSGNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夭夭果菌发布了新的文献求助10
1秒前
2秒前
Hello应助顾在野采纳,获得10
2秒前
2秒前
能干垣完成签到,获得积分10
3秒前
wanci应助saikun采纳,获得10
3秒前
Akim应助峤峤采纳,获得10
5秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
向晚完成签到,获得积分10
8秒前
Maxwell发布了新的文献求助10
9秒前
12秒前
SciGPT应助张启娜采纳,获得10
13秒前
tayyy完成签到,获得积分10
13秒前
优美的碧琴完成签到 ,获得积分10
14秒前
未完发布了新的文献求助20
14秒前
soil完成签到,获得积分10
16秒前
saikun发布了新的文献求助10
17秒前
17秒前
18秒前
长空飞雁完成签到 ,获得积分10
18秒前
SiDi发布了新的文献求助60
19秒前
俏皮诺言发布了新的文献求助10
20秒前
20秒前
哈哈哈给哈哈哈的求助进行了留言
20秒前
蓓蓓0303发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
木槿完成签到,获得积分10
22秒前
李健应助下次一定采纳,获得10
23秒前
lion完成签到,获得积分10
24秒前
lllttt发布了新的文献求助10
24秒前
香蕉觅云应助fengge采纳,获得10
25秒前
WX发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
李爱国应助暴走小面包采纳,获得10
26秒前
26秒前
27秒前
明亮尔冬完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675283
求助须知:如何正确求助?哪些是违规求助? 4944946
关于积分的说明 15152504
捐赠科研通 4834477
什么是DOI,文献DOI怎么找? 2589502
邀请新用户注册赠送积分活动 1543183
关于科研通互助平台的介绍 1501079