OSGNN: Original graph and Subgraph aggregated Graph Neural Network

计算机科学 理论计算机科学 图形 同种类的 因子临界图 嵌入 图因式分解 折线图 电压图 人工智能 数学 组合数学
作者
Yeyu Yan,Chao Li,Yanwei Yu,Xiangju Li,Zhongying Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:225: 120115-120115 被引量:5
标识
DOI:10.1016/j.eswa.2023.120115
摘要

Heterogeneous Graph Embedding (HGE) is receiving a great attention from researchers, as it can be widely and effectively used to solve problems from various real-world applications. The existing HGE models mainly learn node representation directly on the whole heterogeneous graph by aggregating neighboring information, which unavoidably leads to the loss of useful high-order information. Another mainstream is to split heterogeneous graphs into different homogeneous subgraphs and then learn representations separately. However, this isolated handling way is prone to the loss of important interactions between the nodes of the same type. To address the above challenging but interesting problems, we propose an Original graph and Subgraph aggregated Graph Neural Network (OSGNN). Specifically, we first split the original heterogeneous graph into several subgraphs, and then weighted combine them to get a new meaningful homogeneous graph. Finally, the first-order and high-order information of the target node are learned from the original heterogeneous graph and the homogeneous subgraph respectively and concatenated as the final node representation. Extensive experiments on three real-world heterogeneous graphs demonstrate that the proposed framework significantly outperforms the state-of-the-art methods. The source codes of this work are available on https://github.com/ZZY-GraphMiningLab/OSGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ceng发布了新的文献求助10
1秒前
1秒前
1820完成签到,获得积分20
1秒前
sky发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
ofa完成签到,获得积分10
3秒前
aaa完成签到,获得积分10
4秒前
鲤鱼诗桃发布了新的文献求助10
5秒前
5秒前
xxxxx炒菜发布了新的文献求助30
6秒前
隐形曼青应助hahage采纳,获得30
6秒前
6秒前
原梦发布了新的文献求助10
6秒前
7秒前
善学以致用应助小猪仔采纳,获得10
7秒前
震动的曲奇完成签到,获得积分10
8秒前
上官若男应助美美桑内采纳,获得10
8秒前
qhcaywy完成签到,获得积分10
8秒前
9秒前
英俊的铭应助东京芝士123采纳,获得10
9秒前
9秒前
10秒前
又或发布了新的文献求助10
10秒前
云叶发布了新的文献求助10
10秒前
无花果应助LaTeXer采纳,获得10
11秒前
rrr完成签到,获得积分10
11秒前
12秒前
CBLLBC完成签到,获得积分10
12秒前
刚睡醒发布了新的文献求助10
13秒前
烤冷面应助爱吃酸辣粉采纳,获得80
13秒前
NEKO发布了新的文献求助10
14秒前
14秒前
香蕉觅云应助高贵的张张采纳,获得10
15秒前
nxdjmzm发布了新的文献求助10
15秒前
17秒前
LaTeXer应助qwerty采纳,获得100
18秒前
英俊的铭应助纪清月采纳,获得10
18秒前
科目三应助彤彤采纳,获得10
19秒前
hahage发布了新的文献求助30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089190
求助须知:如何正确求助?哪些是违规求助? 4303941
关于积分的说明 13413121
捐赠科研通 4129609
什么是DOI,文献DOI怎么找? 2261628
邀请新用户注册赠送积分活动 1265690
关于科研通互助平台的介绍 1200313