OSGNN: Original graph and Subgraph aggregated Graph Neural Network

计算机科学 理论计算机科学 图形 同种类的 因子临界图 嵌入 图因式分解 折线图 电压图 人工智能 数学 组合数学
作者
Yeyu Yan,Chao Li,Yanwei Yu,Xiangju Li,Zhongying Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120115-120115 被引量:5
标识
DOI:10.1016/j.eswa.2023.120115
摘要

Heterogeneous Graph Embedding (HGE) is receiving a great attention from researchers, as it can be widely and effectively used to solve problems from various real-world applications. The existing HGE models mainly learn node representation directly on the whole heterogeneous graph by aggregating neighboring information, which unavoidably leads to the loss of useful high-order information. Another mainstream is to split heterogeneous graphs into different homogeneous subgraphs and then learn representations separately. However, this isolated handling way is prone to the loss of important interactions between the nodes of the same type. To address the above challenging but interesting problems, we propose an Original graph and Subgraph aggregated Graph Neural Network (OSGNN). Specifically, we first split the original heterogeneous graph into several subgraphs, and then weighted combine them to get a new meaningful homogeneous graph. Finally, the first-order and high-order information of the target node are learned from the original heterogeneous graph and the homogeneous subgraph respectively and concatenated as the final node representation. Extensive experiments on three real-world heterogeneous graphs demonstrate that the proposed framework significantly outperforms the state-of-the-art methods. The source codes of this work are available on https://github.com/ZZY-GraphMiningLab/OSGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
baolongzhan完成签到,获得积分10
1秒前
1秒前
3秒前
YZ发布了新的文献求助10
4秒前
niuniu完成签到,获得积分10
4秒前
4秒前
深情安青应助伈X采纳,获得10
5秒前
lsp完成签到,获得积分10
6秒前
DD立芬完成签到 ,获得积分10
7秒前
7秒前
8秒前
9秒前
甜橙完成签到 ,获得积分10
9秒前
咖喱鸡发布了新的文献求助10
9秒前
丁丁丁发布了新的文献求助10
11秒前
11秒前
完美无声完成签到,获得积分10
13秒前
13秒前
小仙女发布了新的文献求助10
13秒前
科研通AI2S应助且放青山远采纳,获得10
15秒前
16秒前
zoey发布了新的文献求助10
16秒前
小小鱼发布了新的文献求助10
16秒前
Berniece完成签到,获得积分10
17秒前
18秒前
Ava应助小仙女采纳,获得10
18秒前
小陈完成签到,获得积分10
18秒前
所所应助科研达人采纳,获得10
21秒前
tyZhang发布了新的文献求助10
22秒前
22秒前
一北完成签到,获得积分10
22秒前
SOBER完成签到 ,获得积分10
22秒前
24秒前
YZ完成签到,获得积分20
24秒前
DKL完成签到,获得积分10
24秒前
鲜于之玉发布了新的文献求助10
25秒前
顾矜应助旺旺采纳,获得10
25秒前
junze完成签到,获得积分10
25秒前
一北发布了新的文献求助10
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168356
求助须知:如何正确求助?哪些是违规求助? 2819704
关于积分的说明 7927634
捐赠科研通 2479614
什么是DOI,文献DOI怎么找? 1321024
科研通“疑难数据库(出版商)”最低求助积分说明 632946
版权声明 602460