OSGNN: Original graph and Subgraph aggregated Graph Neural Network

计算机科学 理论计算机科学 图形 同种类的 因子临界图 嵌入 图因式分解 折线图 电压图 人工智能 数学 组合数学
作者
Yeyu Yan,Chao Li,Yanwei Yu,Xiangju Li,Zhongying Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120115-120115 被引量:5
标识
DOI:10.1016/j.eswa.2023.120115
摘要

Heterogeneous Graph Embedding (HGE) is receiving a great attention from researchers, as it can be widely and effectively used to solve problems from various real-world applications. The existing HGE models mainly learn node representation directly on the whole heterogeneous graph by aggregating neighboring information, which unavoidably leads to the loss of useful high-order information. Another mainstream is to split heterogeneous graphs into different homogeneous subgraphs and then learn representations separately. However, this isolated handling way is prone to the loss of important interactions between the nodes of the same type. To address the above challenging but interesting problems, we propose an Original graph and Subgraph aggregated Graph Neural Network (OSGNN). Specifically, we first split the original heterogeneous graph into several subgraphs, and then weighted combine them to get a new meaningful homogeneous graph. Finally, the first-order and high-order information of the target node are learned from the original heterogeneous graph and the homogeneous subgraph respectively and concatenated as the final node representation. Extensive experiments on three real-world heterogeneous graphs demonstrate that the proposed framework significantly outperforms the state-of-the-art methods. The source codes of this work are available on https://github.com/ZZY-GraphMiningLab/OSGNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1223发布了新的文献求助10
刚刚
英姑应助许戈追求进步采纳,获得10
刚刚
1秒前
七叶树完成签到,获得积分10
1秒前
1秒前
爆米花应助清爽泥猴桃采纳,获得10
1秒前
皮蛋完成签到,获得积分10
2秒前
彭于彦祖应助奔奔采纳,获得30
2秒前
2秒前
jxt完成签到,获得积分10
2秒前
乐乐应助亚尔采纳,获得10
3秒前
Leona666发布了新的文献求助100
4秒前
上官若男应助拼搏的从雪采纳,获得10
4秒前
MMM发布了新的文献求助10
4秒前
忧心的捕完成签到,获得积分10
4秒前
自由妙竹完成签到 ,获得积分10
4秒前
kurumi0601完成签到,获得积分10
4秒前
4秒前
端庄千琴完成签到,获得积分10
4秒前
rorraine_xu完成签到,获得积分10
4秒前
在水一方应助江河JT采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
fengjingjun完成签到,获得积分10
5秒前
5秒前
6秒前
0994完成签到 ,获得积分10
6秒前
852应助林加雄采纳,获得10
6秒前
7秒前
Criminology34应助Iris99采纳,获得10
7秒前
8秒前
Owen应助忧心的捕采纳,获得10
8秒前
小二郎应助ZiruiDing采纳,获得10
9秒前
9秒前
9秒前
9秒前
菜菜发布了新的文献求助10
9秒前
Akim应助啊懂采纳,获得10
10秒前
贰拾发布了新的文献求助10
10秒前
亚尔完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786