A novel feed-forward neural network-based method for fast hologram generation

全息术 计算机科学 人工神经网络 光学 人工智能 点(几何) 算法 全息显示器 计算机视觉 物理 数学 几何学
作者
Chaoqun Ma,Xiaoyu Jiang,Jing Liu,Liupeng Li
出处
期刊:Optics Communications [Elsevier]
卷期号:530: 129162-129162 被引量:3
标识
DOI:10.1016/j.optcom.2022.129162
摘要

The enormous computing time is a challenge for computer-generated hologram (CGH) calculation in a holographic display. A learning-based method, hologram generation network (HGN), is proposed to accelerate CGH calculation. The method is a unique combination of point-source model and recent deep learning technique, showing how to obtain high-quality CGH quickly. HGN is a feed-forward neural network synthesized from different function blocks. The input of the network is a displacement tensor consisting of point clouds and hologram plane coordinates. The output is a holographic matrix whose column vector represents the coordinates of a single point hologram. The RBF network is then trained and tested by the numerical samples in the bounded field, thus the reconstruction quality of the CGH can be guaranteed strictly. Numerical simulation results show that HGN runs faster than the traditional method with high reconstruction accuracy. The optical experiments are performed to demonstrate its feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
夯大力发布了新的文献求助10
刚刚
刚刚
1秒前
自觉沛芹完成签到,获得积分10
1秒前
YukiXu完成签到 ,获得积分10
1秒前
1秒前
桐桐应助SXM采纳,获得10
2秒前
波特卡斯D艾斯完成签到 ,获得积分10
3秒前
852应助排骨炖豆角采纳,获得10
4秒前
4秒前
顾矜应助木子采纳,获得10
4秒前
feng发布了新的文献求助10
4秒前
成就的小熊猫完成签到,获得积分10
5秒前
5秒前
Morgenstern_ZH完成签到,获得积分10
6秒前
hua发布了新的文献求助10
6秒前
_Forelsket_完成签到,获得积分10
6秒前
6秒前
半颗橙子完成签到 ,获得积分10
8秒前
科研通AI5应助zmy采纳,获得10
8秒前
善学以致用应助enoot采纳,获得10
9秒前
JamesPei应助失眠的血茗采纳,获得10
9秒前
青山发布了新的文献求助10
9秒前
亻鱼发布了新的文献求助10
10秒前
脑洞疼应助成就的小熊猫采纳,获得10
10秒前
10秒前
waterclouds完成签到 ,获得积分10
10秒前
圆圈儿完成签到,获得积分10
10秒前
司空剑封完成签到,获得积分10
11秒前
11秒前
海棠yiyi完成签到,获得积分10
11秒前
11秒前
梁小鑫发布了新的文献求助10
11秒前
Jenny应助圈圈采纳,获得10
12秒前
内向青文完成签到,获得积分10
12秒前
lefora完成签到,获得积分10
12秒前
丰知然应助CO2采纳,获得10
13秒前
Zhihu完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740