Detection of fusarium head blight in wheat under field conditions using a hyperspectral camera and machine learning

高光谱成像 人工智能 镰刀菌 支持向量机 归一化差异植被指数 聚类分析 阶段(地层学) 天蓬 数学 人工神经网络 计算机科学 模式识别(心理学) 遥感 农学 生物 园艺 植物 叶面积指数 地理 古生物学
作者
Muhammad Baraa Almoujahed,Aravind Krishnaswamy Rangarajan,Rebecca L. Whetton,Damien Vincke,Damien Eylenbosch,Philippe Vermeulen,Abdul M. Mouazen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:203: 107456-107456 被引量:25
标识
DOI:10.1016/j.compag.2022.107456
摘要

Fusarium head blight (FHB) is among the most devastating fungal diseases in cereal crops, reducing yield, and affecting human and livestock health through the production of mycotoxin. Despite application of fungicides, complete eradication of disease is virtually impossible in the field. There is a need for a disease detection technology during late growing stage for estimation of yield affected with FHB and for potential selective harvesting. Most published studies have focused on FHB detection during the milk growth stage using hyperspectral cameras. This preliminary study attempted to fill the knowledge gap by detecting FHB at the ripening stage. A spectral library of healthy and infected ears was collected with a hyperspectral camera in the visible and near-infrared region, over the canopy of eight different wheat varieties. The ears were segmented from the background using a simple linear iterative clustering (SLIC) superpixel algorithm on the normalized difference vegetation index (NDVI) images. Three different machine learning methods, namely, support vector machine (SVM), artificial neural network (ANN), and logistic regression (LR), were utilized for classification. To visualize the FHB distribution in the hypercube, the best performing model was applied for predicting the infected ears in the canopy images. The percentage area coverage of FHB for each hypercube was estimated. Results showed that the SVM algorithm produced the best classification accuracy (CA) of 95.6 % in the test set, followed successively by ANN and LR with CA values of 82.9 and 82.5 %, respectively. Interestingly, the preliminary study shows significant differences in spectral reflectance according to the variety of different resistance levels. The study also proves the feasibility of FHB detection using the developed prediction model during late growth stage with the potential of yield loss estimation before harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳yang发布了新的文献求助10
1秒前
小先完成签到,获得积分10
1秒前
zhizu完成签到,获得积分10
2秒前
FashionBoy应助陈卓采纳,获得10
3秒前
4秒前
5秒前
深情安青应助林林采纳,获得10
5秒前
6秒前
李健的小迷弟应助zhizu采纳,获得10
7秒前
天天发布了新的文献求助10
9秒前
蒋臻凯发布了新的文献求助10
10秒前
科研通AI5应助AA采纳,获得10
10秒前
昏睡的蟠桃应助资白玉采纳,获得30
10秒前
大个应助钢笔采纳,获得10
11秒前
ruiruili完成签到,获得积分20
11秒前
12秒前
13秒前
善学以致用应助chenlihuan采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
劲秉应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
愉快夏应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
在水一方应助科研通管家采纳,获得20
14秒前
情怀应助科研通管家采纳,获得10
14秒前
14秒前
sagzy应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
16秒前
科研通AI5应助kkdkg采纳,获得10
16秒前
17秒前
天真纹发布了新的文献求助10
18秒前
科研通AI5应助byyyak采纳,获得10
18秒前
cw完成签到,获得积分10
19秒前
19秒前
斯文钢笔完成签到 ,获得积分10
20秒前
20秒前
20秒前
烟花应助薛华倩采纳,获得10
21秒前
文献文献完成签到 ,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736207
求助须知:如何正确求助?哪些是违规求助? 3279988
关于积分的说明 10017941
捐赠科研通 2996592
什么是DOI,文献DOI怎么找? 1644198
邀请新用户注册赠送积分活动 781831
科研通“疑难数据库(出版商)”最低求助积分说明 749491