亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of fusarium head blight in wheat under field conditions using a hyperspectral camera and machine learning

高光谱成像 人工智能 镰刀菌 支持向量机 归一化差异植被指数 聚类分析 阶段(地层学) 天蓬 数学 人工神经网络 计算机科学 模式识别(心理学) 遥感 农学 生物 园艺 植物 叶面积指数 地理 古生物学
作者
Muhammad Baraa Almoujahed,Aravind Krishnaswamy Rangarajan,Rebecca L. Whetton,Damien Vincke,Damien Eylenbosch,Philippe Vermeulen,Abdul M. Mouazen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:203: 107456-107456 被引量:39
标识
DOI:10.1016/j.compag.2022.107456
摘要

Fusarium head blight (FHB) is among the most devastating fungal diseases in cereal crops, reducing yield, and affecting human and livestock health through the production of mycotoxin. Despite application of fungicides, complete eradication of disease is virtually impossible in the field. There is a need for a disease detection technology during late growing stage for estimation of yield affected with FHB and for potential selective harvesting. Most published studies have focused on FHB detection during the milk growth stage using hyperspectral cameras. This preliminary study attempted to fill the knowledge gap by detecting FHB at the ripening stage. A spectral library of healthy and infected ears was collected with a hyperspectral camera in the visible and near-infrared region, over the canopy of eight different wheat varieties. The ears were segmented from the background using a simple linear iterative clustering (SLIC) superpixel algorithm on the normalized difference vegetation index (NDVI) images. Three different machine learning methods, namely, support vector machine (SVM), artificial neural network (ANN), and logistic regression (LR), were utilized for classification. To visualize the FHB distribution in the hypercube, the best performing model was applied for predicting the infected ears in the canopy images. The percentage area coverage of FHB for each hypercube was estimated. Results showed that the SVM algorithm produced the best classification accuracy (CA) of 95.6 % in the test set, followed successively by ANN and LR with CA values of 82.9 and 82.5 %, respectively. Interestingly, the preliminary study shows significant differences in spectral reflectance according to the variety of different resistance levels. The study also proves the feasibility of FHB detection using the developed prediction model during late growth stage with the potential of yield loss estimation before harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩丸子完成签到 ,获得积分10
1秒前
诚心的访蕊完成签到 ,获得积分10
1秒前
4秒前
chenchen完成签到,获得积分10
4秒前
CipherSage应助PAIDAXXXX采纳,获得10
9秒前
情怀应助西红柿与外太空采纳,获得10
14秒前
赫连人杰完成签到 ,获得积分10
15秒前
齐桉完成签到 ,获得积分10
18秒前
阿姨洗铁路完成签到 ,获得积分10
27秒前
帅气的香之完成签到,获得积分10
30秒前
dadabad完成签到 ,获得积分10
30秒前
情怀应助里vh采纳,获得10
35秒前
互助应助70采纳,获得10
39秒前
41秒前
CodeCraft应助时空星客采纳,获得10
43秒前
PAIDAXXXX发布了新的文献求助10
46秒前
ccc完成签到,获得积分10
52秒前
LAN完成签到,获得积分10
53秒前
56秒前
56秒前
58秒前
58秒前
时空星客发布了新的文献求助10
1分钟前
1分钟前
繁星背后完成签到,获得积分10
1分钟前
Reborn应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
1分钟前
Reborn应助科研通管家采纳,获得10
1分钟前
小二郎应助5t5采纳,获得10
1分钟前
完美世界应助tingtingliuok采纳,获得10
1分钟前
1分钟前
1分钟前
不要慌完成签到 ,获得积分10
1分钟前
奥一奥发布了新的文献求助10
1分钟前
5t5发布了新的文献求助10
1分钟前
jiao完成签到,获得积分10
1分钟前
1分钟前
1分钟前
黑胡椒完成签到 ,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870591
求助须知:如何正确求助?哪些是违规求助? 6463951
关于积分的说明 15664463
捐赠科研通 4986675
什么是DOI,文献DOI怎么找? 2688931
邀请新用户注册赠送积分活动 1631313
关于科研通互助平台的介绍 1589367