Detection and analysis of sweet potato defects based on hyperspectral imaging technology

高光谱成像 最佳位置 遥感 计算机科学 材料科学 人工智能 地质学 模拟 速滑
作者
Yuanyuan Shao,Yi Liu,Guantao Xuan,Yukang Shi,Quankai Li,Zhichao Hu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:127: 104403-104403 被引量:20
标识
DOI:10.1016/j.infrared.2022.104403
摘要

• Spectral analysis was conducted to healthy and defective sweet potatoes. • Characteristic wavelengths were extracted from SNV spectra with MCUVE, RF and SPA. • Healthy, frostbitten and diseased sweet potatoes were classified by PLS-DA and LDA. In order to identify the defective sweet potato quickly, this study used hyperspectral imaging technology to classify healthy, frostbitten and diseased sweet potatoes. The training set and prediction set were divided according to the ratio of 3:1 by sample set partitioning based on joint x-y distances (SPXY) algorithm, and then the standard normal variable (SNV) pretreatment was carried out for the spectral data. In order to improve the running speed of the model and eliminate redundant variables, Monte Carlo uninformative variables elimination (MCUVE), Random frog (RF) algorithm and successive projections algorithm (SPA) were used to extract characteristic wavelengths. Finally, partial least square discrimination analysis (PLS-DA) and linear discrimination analysis (LDA) were used to establish classification models. The final results showed that the classification performance of the SPA-LDA model was the best, and the total accuracy of the prediction set reached 99.52%. In summary, hyperspectral imaging technology can accomplish the accurate detection of sweet potato defects, and provides feasible ideas for the automatic classification of sweet potatoes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助wwangwin采纳,获得10
3秒前
一枝完成签到 ,获得积分10
3秒前
4秒前
在水一方应助卖萌的秋田采纳,获得10
4秒前
4秒前
4秒前
4秒前
情怀应助乔呆驼采纳,获得10
5秒前
membrane完成签到 ,获得积分10
6秒前
6秒前
调皮黑猫完成签到,获得积分10
7秒前
8秒前
所所应助汪汪汪大大采纳,获得10
8秒前
武雨寒发布了新的文献求助10
8秒前
fff完成签到,获得积分10
9秒前
天朗完成签到,获得积分20
10秒前
10秒前
12秒前
小富婆完成签到,获得积分20
13秒前
15秒前
虚幻的安容完成签到,获得积分20
15秒前
王欣完成签到 ,获得积分10
16秒前
yimi发布了新的文献求助10
17秒前
卖萌的秋田完成签到,获得积分10
17秒前
小蘑菇应助神秘人采纳,获得10
18秒前
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
搜集达人应助幸福糖豆采纳,获得10
18秒前
罐罐儿应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
18秒前
十二曲阑干完成签到,获得积分20
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254496
求助须知:如何正确求助?哪些是违规求助? 2896621
关于积分的说明 8293567
捐赠科研通 2565575
什么是DOI,文献DOI怎么找? 1393151
科研通“疑难数据库(出版商)”最低求助积分说明 652436
邀请新用户注册赠送积分活动 629972