Detection and analysis of sweet potato defects based on hyperspectral imaging technology

高光谱成像 最佳位置 遥感 计算机科学 材料科学 人工智能 地质学 模拟 速滑
作者
Yuanyuan Shao,Yi Liu,Guantao Xuan,Yukang Shi,Quankai Li,Zhichao Hu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:127: 104403-104403 被引量:24
标识
DOI:10.1016/j.infrared.2022.104403
摘要

• Spectral analysis was conducted to healthy and defective sweet potatoes. • Characteristic wavelengths were extracted from SNV spectra with MCUVE, RF and SPA. • Healthy, frostbitten and diseased sweet potatoes were classified by PLS-DA and LDA. In order to identify the defective sweet potato quickly, this study used hyperspectral imaging technology to classify healthy, frostbitten and diseased sweet potatoes. The training set and prediction set were divided according to the ratio of 3:1 by sample set partitioning based on joint x-y distances (SPXY) algorithm, and then the standard normal variable (SNV) pretreatment was carried out for the spectral data. In order to improve the running speed of the model and eliminate redundant variables, Monte Carlo uninformative variables elimination (MCUVE), Random frog (RF) algorithm and successive projections algorithm (SPA) were used to extract characteristic wavelengths. Finally, partial least square discrimination analysis (PLS-DA) and linear discrimination analysis (LDA) were used to establish classification models. The final results showed that the classification performance of the SPA-LDA model was the best, and the total accuracy of the prediction set reached 99.52%. In summary, hyperspectral imaging technology can accomplish the accurate detection of sweet potato defects, and provides feasible ideas for the automatic classification of sweet potatoes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kcmat发布了新的文献求助10
1秒前
hh完成签到,获得积分10
2秒前
Philadelphus发布了新的文献求助10
3秒前
einuo完成签到,获得积分10
3秒前
AKYDXS完成签到,获得积分10
6秒前
昏睡的蟠桃应助Llllll采纳,获得200
6秒前
科研通AI2S应助hao采纳,获得10
6秒前
7秒前
7秒前
香蕉觅云应助阿湫采纳,获得10
8秒前
星辰大海应助星辰采纳,获得10
8秒前
阿卡宁完成签到,获得积分10
8秒前
lzw完成签到 ,获得积分10
8秒前
沉静烧仙草完成签到,获得积分20
9秒前
烟花应助嘉嘉琦采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
accepted应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
cdh1994应助kcmat采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
我是老大应助科研通管家采纳,获得30
10秒前
脑洞疼应助科研通管家采纳,获得20
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048