Detection and analysis of sweet potato defects based on hyperspectral imaging technology

高光谱成像 最佳位置 遥感 计算机科学 材料科学 人工智能 地质学 模拟 速滑
作者
Yuanyuan Shao,Yi Liu,Guantao Xuan,Yukang Shi,Quankai Li,Zhichao Hu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:127: 104403-104403 被引量:24
标识
DOI:10.1016/j.infrared.2022.104403
摘要

• Spectral analysis was conducted to healthy and defective sweet potatoes. • Characteristic wavelengths were extracted from SNV spectra with MCUVE, RF and SPA. • Healthy, frostbitten and diseased sweet potatoes were classified by PLS-DA and LDA. In order to identify the defective sweet potato quickly, this study used hyperspectral imaging technology to classify healthy, frostbitten and diseased sweet potatoes. The training set and prediction set were divided according to the ratio of 3:1 by sample set partitioning based on joint x-y distances (SPXY) algorithm, and then the standard normal variable (SNV) pretreatment was carried out for the spectral data. In order to improve the running speed of the model and eliminate redundant variables, Monte Carlo uninformative variables elimination (MCUVE), Random frog (RF) algorithm and successive projections algorithm (SPA) were used to extract characteristic wavelengths. Finally, partial least square discrimination analysis (PLS-DA) and linear discrimination analysis (LDA) were used to establish classification models. The final results showed that the classification performance of the SPA-LDA model was the best, and the total accuracy of the prediction set reached 99.52%. In summary, hyperspectral imaging technology can accomplish the accurate detection of sweet potato defects, and provides feasible ideas for the automatic classification of sweet potatoes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逆时针应助赫连烙采纳,获得10
刚刚
四夕完成签到 ,获得积分10
刚刚
1秒前
1秒前
Tong123完成签到,获得积分20
1秒前
姜惠应助曾志伟采纳,获得10
1秒前
李健的粉丝团团长应助Yy采纳,获得10
2秒前
三新荞发布了新的文献求助10
2秒前
和和发布了新的文献求助10
2秒前
李白南南发布了新的文献求助10
2秒前
2秒前
奇奇发布了新的文献求助10
3秒前
MgZn发布了新的文献求助10
3秒前
3秒前
lixia完成签到 ,获得积分10
3秒前
忧郁绝音发布了新的文献求助10
4秒前
缓慢如南应助17381362015采纳,获得10
4秒前
科研通AI5应助iwww采纳,获得10
4秒前
科研小狗发布了新的文献求助30
4秒前
我想@科研发布了新的文献求助10
5秒前
MHX发布了新的文献求助10
5秒前
衿霜发布了新的文献求助10
5秒前
sxm发布了新的文献求助10
6秒前
7秒前
大端发布了新的文献求助10
7秒前
王小姐不吃药完成签到 ,获得积分10
7秒前
7秒前
领导范儿应助孟双采纳,获得10
7秒前
iNk应助合适尔槐采纳,获得20
8秒前
10秒前
单薄飞莲完成签到,获得积分10
10秒前
Crystal发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Jasper应助漂流的云朵采纳,获得10
11秒前
12秒前
ding应助呆呆熊采纳,获得10
12秒前
背后飞柏完成签到,获得积分10
13秒前
13秒前
麦丰完成签到,获得积分10
13秒前
澈哩发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970949
求助须知:如何正确求助?哪些是违规求助? 3515634
关于积分的说明 11179061
捐赠科研通 3250769
什么是DOI,文献DOI怎么找? 1795474
邀请新用户注册赠送积分活动 875831
科研通“疑难数据库(出版商)”最低求助积分说明 805188