Detection and analysis of sweet potato defects based on hyperspectral imaging technology

高光谱成像 最佳位置 遥感 计算机科学 材料科学 人工智能 地质学 模拟 速滑
作者
Yuanyuan Shao,Yi Liu,Guantao Xuan,Yukang Shi,Quankai Li,Zhichao Hu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:127: 104403-104403 被引量:24
标识
DOI:10.1016/j.infrared.2022.104403
摘要

• Spectral analysis was conducted to healthy and defective sweet potatoes. • Characteristic wavelengths were extracted from SNV spectra with MCUVE, RF and SPA. • Healthy, frostbitten and diseased sweet potatoes were classified by PLS-DA and LDA. In order to identify the defective sweet potato quickly, this study used hyperspectral imaging technology to classify healthy, frostbitten and diseased sweet potatoes. The training set and prediction set were divided according to the ratio of 3:1 by sample set partitioning based on joint x-y distances (SPXY) algorithm, and then the standard normal variable (SNV) pretreatment was carried out for the spectral data. In order to improve the running speed of the model and eliminate redundant variables, Monte Carlo uninformative variables elimination (MCUVE), Random frog (RF) algorithm and successive projections algorithm (SPA) were used to extract characteristic wavelengths. Finally, partial least square discrimination analysis (PLS-DA) and linear discrimination analysis (LDA) were used to establish classification models. The final results showed that the classification performance of the SPA-LDA model was the best, and the total accuracy of the prediction set reached 99.52%. In summary, hyperspectral imaging technology can accomplish the accurate detection of sweet potato defects, and provides feasible ideas for the automatic classification of sweet potatoes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助义气萝卜头采纳,获得10
2秒前
杨小六发布了新的文献求助10
3秒前
悦耳的亦旋完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
6秒前
7秒前
scichu完成签到,获得积分10
9秒前
whh发布了新的文献求助10
9秒前
夹子方糖发布了新的文献求助10
9秒前
11秒前
11秒前
12秒前
正直摇伽发布了新的文献求助10
14秒前
阿瓒完成签到 ,获得积分20
15秒前
111发布了新的文献求助10
16秒前
16秒前
17秒前
Jasper应助眠茶醒药采纳,获得10
17秒前
19秒前
20秒前
轻轻发布了新的文献求助10
20秒前
四叶曦完成签到 ,获得积分10
20秒前
千寻完成签到 ,获得积分10
21秒前
ASXC完成签到,获得积分20
23秒前
ecoli发布了新的文献求助10
25秒前
慕青应助徐徐采纳,获得10
27秒前
还单身的竺完成签到 ,获得积分10
27秒前
28秒前
搜集达人应助Led采纳,获得10
30秒前
徐5V完成签到,获得积分10
31秒前
孙尉钦完成签到,获得积分10
33秒前
要减肥发布了新的文献求助10
34秒前
调调发布了新的文献求助10
34秒前
nki发布了新的文献求助10
36秒前
38秒前
丸子完成签到,获得积分10
39秒前
打打应助正直摇伽采纳,获得10
39秒前
111完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976253
求助须知:如何正确求助?哪些是违规求助? 3520405
关于积分的说明 11203301
捐赠科研通 3257028
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877755
科研通“疑难数据库(出版商)”最低求助积分说明 806521