Highly remediation capacity of tetracycline by iron‑manganese bimetallic materials: Performance and mechanisms

双金属 双金属片 X射线光电子能谱 氧化还原 纳米复合材料 扫描电子显微镜 零价铁 化学 透射电子显微镜 材料科学 核化学 动力学 化学工程 无机化学 金属 冶金 纳米技术 吸附 复合材料 物理化学 工程类 物理 量子力学
作者
Liu Guo,Bing Liao,Xinyu Quan,Wen Xu,Tao Lü,Xuying Deng,Jing Liu
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:50: 103318-103318 被引量:4
标识
DOI:10.1016/j.jwpe.2022.103318
摘要

To enhance the decontamination capacity of zero-valent iron and mitigate its susceptibility to oxidation and passivation, manganese (Mn) was introduced in the current study to prepare the iron‑manganese bimetallic material by one-step chemical reduction method to remove tetracycline (TC). A series of methods including Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), Transmission Electron Microscope (TEM), Vibrating Sample Magnetometer (VSM) and X-ray Photoelectron Spectroscopy (XPS) were applied to investigate the characteristics of the nanocomposite. Furthermore, batch experiments were conducted to explore the effects of key parameters such as dosage, pH, initial concentration and coexisting ions on the removing TC with Fe-Mn bimetal nanocomposite. At the same time, reaction mechanism and degradation pathways were examined. The results showed that the bimetallic particles were highly paramagnetic for recover and evenly distributed, consisting of zero-valent Fe and Mn as well as their respective oxides. The removal kinetics of TC showed a fast process and reached a removal capacity of 330.17 mg/g within a reaction time of 60 min under TC concentration of 100 mg/L, pH = 3 and dosage of 0.3 g/L. The coexistence of both cations and anions had significant effect on the TC removal in the experimental conditions. Finally, OH and O2− played a major role in the redox reaction and the possible reaction mechanism and degradation pathways were demonstrated. To sum up, the Fe-Mn bimetal nanocomposite was proved to be promising and effective for treating TC-containing wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快点毕业完成签到,获得积分20
刚刚
猛男发布了新的文献求助10
刚刚
CodeCraft应助12366666采纳,获得10
刚刚
JamesPei应助11采纳,获得10
刚刚
可爱的函函应助11采纳,获得10
刚刚
你好呀完成签到 ,获得积分10
2秒前
左丘忻完成签到,获得积分10
4秒前
orixero应助徐徐采纳,获得10
4秒前
冷酷的魂幽完成签到,获得积分10
7秒前
7秒前
执着的若灵完成签到,获得积分10
9秒前
9秒前
零度完成签到 ,获得积分10
9秒前
10秒前
11秒前
丘比特应助雪碧采纳,获得10
11秒前
张张完成签到,获得积分10
11秒前
lengki完成签到 ,获得积分10
12秒前
victorchen完成签到,获得积分10
13秒前
zzz完成签到,获得积分10
13秒前
13秒前
董ccc关注了科研通微信公众号
13秒前
追寻的语柔完成签到 ,获得积分10
13秒前
15秒前
小程同学发布了新的文献求助10
16秒前
小jiojio的猪完成签到,获得积分10
16秒前
研友_VZG7GZ应助的速度采纳,获得10
17秒前
隐形曼青应助YEFEIeee采纳,获得20
17秒前
隐形曼青应助从容的寒安采纳,获得10
17秒前
20秒前
珊珊4532完成签到 ,获得积分10
20秒前
我我我魔法师完成签到,获得积分10
21秒前
榄嶙关注了科研通微信公众号
24秒前
zyy完成签到,获得积分10
24秒前
26秒前
29秒前
自信甜瓜应助hu采纳,获得10
29秒前
30秒前
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557373
求助须知:如何正确求助?哪些是违规求助? 3132507
关于积分的说明 9397818
捐赠科研通 2832685
什么是DOI,文献DOI怎么找? 1556954
邀请新用户注册赠送积分活动 727016
科研通“疑难数据库(出版商)”最低求助积分说明 716184