Prediction of mean and RMS wind pressure coefficients for low-rise buildings using deep neural networks

均方误差 人工神经网络 均方根 相关系数 计算机科学 NIST公司 随机森林 山脊 回归 统计 人工智能 数学 机器学习 地质学 语音识别 工程类 电气工程 古生物学
作者
Youqin Huang,Guanheng Ou,Jiyang Fu,Honghao Zhang
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:274: 115149-115149 被引量:6
标识
DOI:10.1016/j.engstruct.2022.115149
摘要

Although the problems of wind pressure prediction on roofs have been studied extensively, the prediction accuracy is still unsatisfactory owing to the limited capacity of shallow learning of artificial neural networks (ANNs), especially in the areas characterized by flow separation. Moreover, the literatures have only conducted error analysis on part of the predicted taps instead of all taps, and have not made precision comparison with related studies. In this paper, the model of deep neural networks (DNNs) with the ability of deep learning are built to predict the mean and root-mean-square (RMS) wind pressure coefficients on low-rise buildings. For quantitatively comparing the presented results with those from the literature, the same buildings from the NIST-UWO database as studied by the literature are also predicted in this work. In order to improve the DNNs model for predicting the corner zone with higher pressure gradients, a nested DNNs model is further proposed by returning the mean coefficients predicted by one DNNs model as the input of another DNNs model for the RMS coefficients. The prediction results of the DNNs model are also compared with those from the methods of random forest (RF) and general regression neural network (GRNN). The study shows that the DNNs model obviously enhances the prediction accuracy around the roof ridge and the corner bay in comparison with the ANNs model. For the mean or RMS coefficients of all the taps on the whole roof, the correlation coefficient between predicted and experimental results exceeds 0.997, the mean-square-error (MSE) is less than 5 %, and the relative errors of>95 % predicted samples are lower than 10 %. The prediction accuracy in the corner zone is further improved by the nested network where the samples within errors less than 5 % are evidently increased and the errors > 20 % disappear. Also, the prediction results from the DNNs model are apparently better than those from RF and GRNN. This study could provide a benchmark for future studies on the prediction of mean or RMS wind pressure coefficients on the roofs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代的访曼应助XCHI采纳,获得20
刚刚
2秒前
2秒前
Duke完成签到,获得积分10
2秒前
漫漫完成签到 ,获得积分10
3秒前
华仔应助祯果粒采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
角鸮完成签到,获得积分10
5秒前
5秒前
PZD发布了新的文献求助10
5秒前
刻苦大侠发布了新的文献求助10
6秒前
7秒前
Guo1020181完成签到,获得积分10
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
柯一一应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
可爱的函函应助1762120采纳,获得10
9秒前
ismm2002完成签到,获得积分10
9秒前
好旺完成签到,获得积分10
9秒前
Guo1020181发布了新的文献求助20
10秒前
11秒前
小赖发布了新的文献求助20
11秒前
咕咕发布了新的文献求助10
12秒前
13秒前
蘑菇屋完成签到 ,获得积分10
14秒前
李李完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377