Prediction of mean and RMS wind pressure coefficients for low-rise buildings using deep neural networks

均方误差 人工神经网络 均方根 相关系数 计算机科学 NIST公司 随机森林 山脊 回归 统计 人工智能 数学 机器学习 地质学 语音识别 工程类 电气工程 古生物学
作者
Youqin Huang,Guanheng Ou,Jiyang Fu,Honghao Zhang
出处
期刊:Engineering Structures [Elsevier]
卷期号:274: 115149-115149 被引量:6
标识
DOI:10.1016/j.engstruct.2022.115149
摘要

Although the problems of wind pressure prediction on roofs have been studied extensively, the prediction accuracy is still unsatisfactory owing to the limited capacity of shallow learning of artificial neural networks (ANNs), especially in the areas characterized by flow separation. Moreover, the literatures have only conducted error analysis on part of the predicted taps instead of all taps, and have not made precision comparison with related studies. In this paper, the model of deep neural networks (DNNs) with the ability of deep learning are built to predict the mean and root-mean-square (RMS) wind pressure coefficients on low-rise buildings. For quantitatively comparing the presented results with those from the literature, the same buildings from the NIST-UWO database as studied by the literature are also predicted in this work. In order to improve the DNNs model for predicting the corner zone with higher pressure gradients, a nested DNNs model is further proposed by returning the mean coefficients predicted by one DNNs model as the input of another DNNs model for the RMS coefficients. The prediction results of the DNNs model are also compared with those from the methods of random forest (RF) and general regression neural network (GRNN). The study shows that the DNNs model obviously enhances the prediction accuracy around the roof ridge and the corner bay in comparison with the ANNs model. For the mean or RMS coefficients of all the taps on the whole roof, the correlation coefficient between predicted and experimental results exceeds 0.997, the mean-square-error (MSE) is less than 5 %, and the relative errors of>95 % predicted samples are lower than 10 %. The prediction accuracy in the corner zone is further improved by the nested network where the samples within errors less than 5 % are evidently increased and the errors > 20 % disappear. Also, the prediction results from the DNNs model are apparently better than those from RF and GRNN. This study could provide a benchmark for future studies on the prediction of mean or RMS wind pressure coefficients on the roofs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxp_bioinfo完成签到,获得积分10
刚刚
刚刚
桐桐应助wangg采纳,获得10
刚刚
Jun完成签到,获得积分10
1秒前
芝士的酒发布了新的文献求助50
1秒前
2秒前
赘婿应助复杂的问玉采纳,获得30
2秒前
3秒前
3秒前
4秒前
端庄白开水完成签到,获得积分10
4秒前
吕春雨发布了新的文献求助10
4秒前
大个应助wxp_bioinfo采纳,获得10
5秒前
yqq完成签到 ,获得积分10
5秒前
6秒前
7秒前
芝士发布了新的文献求助10
7秒前
橘子发布了新的文献求助10
8秒前
8秒前
8秒前
晨曦发布了新的文献求助10
9秒前
9秒前
kobiy完成签到 ,获得积分10
9秒前
wu完成签到 ,获得积分10
10秒前
蛋泥完成签到,获得积分10
10秒前
顾矜应助mingjie采纳,获得10
11秒前
zhaowenxian发布了新的文献求助10
11秒前
勤劳傲晴发布了新的文献求助10
12秒前
12秒前
橘子完成签到,获得积分10
14秒前
可耐的从安完成签到 ,获得积分10
15秒前
zho应助背后的诺言采纳,获得10
15秒前
粥粥完成签到,获得积分10
15秒前
16秒前
打打应助陈杰采纳,获得10
17秒前
充电宝应助柔弱凡松采纳,获得10
18秒前
Jasmine发布了新的文献求助10
19秒前
20秒前
20秒前
大气的秋完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794