均方误差
人工神经网络
均方根
相关系数
计算机科学
NIST公司
随机森林
山脊
回归
统计
人工智能
数学
机器学习
地质学
语音识别
工程类
电气工程
古生物学
作者
Youqin Huang,Guanheng Ou,Jiyang Fu,Honghao Zhang
标识
DOI:10.1016/j.engstruct.2022.115149
摘要
Although the problems of wind pressure prediction on roofs have been studied extensively, the prediction accuracy is still unsatisfactory owing to the limited capacity of shallow learning of artificial neural networks (ANNs), especially in the areas characterized by flow separation. Moreover, the literatures have only conducted error analysis on part of the predicted taps instead of all taps, and have not made precision comparison with related studies. In this paper, the model of deep neural networks (DNNs) with the ability of deep learning are built to predict the mean and root-mean-square (RMS) wind pressure coefficients on low-rise buildings. For quantitatively comparing the presented results with those from the literature, the same buildings from the NIST-UWO database as studied by the literature are also predicted in this work. In order to improve the DNNs model for predicting the corner zone with higher pressure gradients, a nested DNNs model is further proposed by returning the mean coefficients predicted by one DNNs model as the input of another DNNs model for the RMS coefficients. The prediction results of the DNNs model are also compared with those from the methods of random forest (RF) and general regression neural network (GRNN). The study shows that the DNNs model obviously enhances the prediction accuracy around the roof ridge and the corner bay in comparison with the ANNs model. For the mean or RMS coefficients of all the taps on the whole roof, the correlation coefficient between predicted and experimental results exceeds 0.997, the mean-square-error (MSE) is less than 5 %, and the relative errors of>95 % predicted samples are lower than 10 %. The prediction accuracy in the corner zone is further improved by the nested network where the samples within errors less than 5 % are evidently increased and the errors > 20 % disappear. Also, the prediction results from the DNNs model are apparently better than those from RF and GRNN. This study could provide a benchmark for future studies on the prediction of mean or RMS wind pressure coefficients on the roofs.
科研通智能强力驱动
Strongly Powered by AbleSci AI