Prediction of mean and RMS wind pressure coefficients for low-rise buildings using deep neural networks

均方误差 人工神经网络 均方根 相关系数 计算机科学 NIST公司 随机森林 山脊 回归 统计 人工智能 数学 机器学习 地质学 语音识别 工程类 电气工程 古生物学
作者
Youqin Huang,Guanheng Ou,Jiyang Fu,Honghao Zhang
出处
期刊:Engineering Structures [Elsevier]
卷期号:274: 115149-115149 被引量:6
标识
DOI:10.1016/j.engstruct.2022.115149
摘要

Although the problems of wind pressure prediction on roofs have been studied extensively, the prediction accuracy is still unsatisfactory owing to the limited capacity of shallow learning of artificial neural networks (ANNs), especially in the areas characterized by flow separation. Moreover, the literatures have only conducted error analysis on part of the predicted taps instead of all taps, and have not made precision comparison with related studies. In this paper, the model of deep neural networks (DNNs) with the ability of deep learning are built to predict the mean and root-mean-square (RMS) wind pressure coefficients on low-rise buildings. For quantitatively comparing the presented results with those from the literature, the same buildings from the NIST-UWO database as studied by the literature are also predicted in this work. In order to improve the DNNs model for predicting the corner zone with higher pressure gradients, a nested DNNs model is further proposed by returning the mean coefficients predicted by one DNNs model as the input of another DNNs model for the RMS coefficients. The prediction results of the DNNs model are also compared with those from the methods of random forest (RF) and general regression neural network (GRNN). The study shows that the DNNs model obviously enhances the prediction accuracy around the roof ridge and the corner bay in comparison with the ANNs model. For the mean or RMS coefficients of all the taps on the whole roof, the correlation coefficient between predicted and experimental results exceeds 0.997, the mean-square-error (MSE) is less than 5 %, and the relative errors of>95 % predicted samples are lower than 10 %. The prediction accuracy in the corner zone is further improved by the nested network where the samples within errors less than 5 % are evidently increased and the errors > 20 % disappear. Also, the prediction results from the DNNs model are apparently better than those from RF and GRNN. This study could provide a benchmark for future studies on the prediction of mean or RMS wind pressure coefficients on the roofs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知奥发布了新的文献求助10
刚刚
刚刚
桐桐应助Dr_He采纳,获得20
刚刚
1秒前
燕祁发布了新的文献求助10
3秒前
方向阳完成签到 ,获得积分10
5秒前
俗签发布了新的文献求助10
5秒前
优秀元枫完成签到,获得积分10
7秒前
科研通AI2S应助huahua采纳,获得10
7秒前
7秒前
7秒前
汉堡包应助mimi采纳,获得10
7秒前
自信的眉毛完成签到,获得积分20
8秒前
10秒前
susu完成签到 ,获得积分10
11秒前
12秒前
浅弋发布了新的文献求助10
12秒前
Spinnin完成签到,获得积分10
13秒前
zhuding1978完成签到,获得积分10
14秒前
kkk完成签到,获得积分10
14秒前
huang完成签到,获得积分10
15秒前
15秒前
jisuanwuli发布了新的文献求助10
16秒前
燕祁完成签到,获得积分10
16秒前
英姑应助纯真硬币采纳,获得10
17秒前
紫薯球完成签到,获得积分10
18秒前
英姑应助一缕炊烟照月明采纳,获得10
18秒前
小十二完成签到 ,获得积分10
18秒前
传奇3应助soul13max采纳,获得10
19秒前
jw完成签到,获得积分10
20秒前
水星完成签到,获得积分10
21秒前
求求接收吧完成签到,获得积分10
21秒前
浅弋完成签到,获得积分10
22秒前
Ashao完成签到,获得积分10
23秒前
甜汤完成签到,获得积分20
23秒前
自信的眉毛完成签到,获得积分10
24秒前
现代的曲奇完成签到 ,获得积分10
24秒前
Robertchen完成签到,获得积分10
25秒前
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023