材料科学
辐照
飞秒
激光器
二氧化硅
石英玻璃
二氧化碳
光学
二氧化碳激光器
蚀刻(微加工)
光电子学
复合材料
纳米技术
化学
图层(电子)
物理
有机化学
核物理学
激光手术
作者
Jianping Yu,Jian Xu,Qiaonan Dong,Jia Qi,Jianfang Chen,Aodong Zhang,Yunpeng Song,Wei Chen,Ya Cheng
标识
DOI:10.1016/j.optlastec.2022.108889
摘要
• Low-loss optofluidic waveguides encapsulated in glass has been demonstrated using hybrid laser microfabrication. • Smooth and uniform all-glass microchannels with diameters down to ∼ 9 μm and centimeter-scale lengths are fabricated. • Internal polishing of the whole microchannels and port sealing are simultaneous achieved by a laser-induced thermal flow effect. We demonstrate the fabrication of low-loss optofluidic waveguides encapsulated in fused silica glass using femtosecond laser microfabrication followed by carbon dioxide laser irradiation. Spatially-shaped femtosecond laser-assisted chemical etching is first used to fabricate microchannels with circular cross-sections and a string of open extra-access ports in the glass. Further, the carbon dioxide laser direct writing on the glass surface is used to create a thermal reflow effect of etched glass microstructures for simultaneously polishing all internal surfaces of channels and sealing the extra-access ports. With this effect, the inner surface roughness of the etched microchannels can be reduced to ∼ 40 nm. Finally, a single-mode microfluidic optical waveguide with a propagation loss of ∼ 0.78 dB/cm at 1310 nm is obtained inside the glass by filling a mixture solution of decane and liquid paraffin into a laser-polished microchannel.
科研通智能强力驱动
Strongly Powered by AbleSci AI