Prediction of submicron particle dynamics in fibrous filter using deep convolutional neural networks

计算流体力学 物理 多物理 流体力学 机械 层流 流速 卷积神经网络 流量(数学) 加速 流体力学 统计物理学 替代模型 布朗运动 人工智能 计算机科学 机器学习 有限元法 量子力学 热力学 操作系统
作者
Mohammadreza Shirzadi,Tomonori Fukasawa,Kunihiro Fukui,Toru Ishigami
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (12) 被引量:7
标识
DOI:10.1063/5.0127325
摘要

This study developed a data-driven model for the prediction of fluid–particle dynamics by coupling a flow surrogate model based on the deep convolutional neural network (CNN) and a Lagrangian particle tracking model based on the discrete phase model. The applicability of the model for the prediction of the single-fiber filtration efficiency (SFFE) for elliptical- and trilobal-shaped fibers was investigated. The ground-truth training data for the CNN flow surrogate model were obtained from a validated computational fluid dynamics (CFD) model for laminar incompressible flow. Details of fluid–particle dynamics parameters, including fluid and particle velocity vectors and contribution of Brownian and hydrodynamic forces, were examined to qualitatively and quantitatively evaluate the developed data-driven model. The CNN model with the U-net architecture provided highly accurate per-pixel predictions of velocity vectors and static pressure around the fibers with a speedup of more than three orders of magnitude compared with CFD simulations. Although SFFE was accurately predicted by the data-driven model, the uncertainties in the velocity predictions by the CNN flow surrogate model in low-velocity regions near the fibers resulted in deviations in the particle dynamics predictions. These flow uncertainties contributed to the random motion of particles due to Brownian diffusion and increased the probability of particles being captured by the fiber. The findings provide guidelines for the development of data science-based models for multiphysics fluid mechanics problems encountered in fibrous systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情堪隽永不如故完成签到,获得积分10
刚刚
1秒前
后来发布了新的文献求助10
1秒前
豌豆发布了新的文献求助10
3秒前
3秒前
4秒前
ningmengcao发布了新的文献求助20
4秒前
桃子完成签到,获得积分10
4秒前
4秒前
KeCoKeLe完成签到,获得积分10
5秒前
5秒前
SHAO应助小灰灰采纳,获得10
6秒前
研友_VZG7GZ应助伞兵龙采纳,获得10
6秒前
saberynn发布了新的文献求助10
6秒前
CodeCraft应助sweat采纳,获得10
7秒前
涵泽发布了新的文献求助10
7秒前
7秒前
kelakola完成签到,获得积分10
7秒前
9秒前
tyhmugua完成签到,获得积分10
9秒前
9秒前
乐乐应助邓艳梅采纳,获得10
9秒前
lii应助小四火采纳,获得10
10秒前
LSJ发布了新的文献求助10
10秒前
10秒前
愉快的画板完成签到,获得积分10
11秒前
科研通AI2S应助后来采纳,获得10
12秒前
JamesPei应助碎米花采纳,获得10
12秒前
tomorrow发布了新的文献求助10
12秒前
今后应助勤劳的鸡采纳,获得10
12秒前
12秒前
阳光宅男发布了新的文献求助10
13秒前
13秒前
大模型应助奋斗蜗牛采纳,获得10
13秒前
彭于晏应助回鱼采纳,获得10
14秒前
14秒前
14秒前
14秒前
wuwuwu发布了新的文献求助10
14秒前
saberynn完成签到,获得积分10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113