Predicting plant biomass and species richness in temperate grasslands across regions, time, and land management with remote sensing and deep learning

物种丰富度 遥感 生物量(生态学) 温带气候 环境科学 草原 植被(病理学) 航程(航空) 空间生态学 随机森林 预测建模 自然地理学 生态学 地理 计算机科学 生物 机器学习 医学 病理 复合材料 材料科学
作者
Javier Muro,Anja Linstädter,Paul Magdon,Stephan Wöllauer,F. A. Männer,Lisa-Maricia Schwarz,Gohar Ghazaryan,Johannes Schultz,Zbyněk Malenovský,Olena Dubovyk
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:282: 113262-113262 被引量:36
标识
DOI:10.1016/j.rse.2022.113262
摘要

Spatial predictions of biomass production and biodiversity at regional scale in grasslands are critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can predict these grassland characteristics with varying accuracy. However, such studies frequently fail to cover a sufficiently broad range of environmental conditions, and their prediction models are often case-specific. To address this gap, we have modelled above-ground biomass and species richness in 150 spatially independent grassland plots of three geographical regions in Germany. These regions follow a North-South climate gradient and differ in soil types, topography, elevation, climatic conditions, historical contexts, and management intensities. The predictors tested in this study are Sentinel-1 backscatter, Sentinel-2 time series of surface reflectance along with derived vegetation indices and Rao's Q, and a set of topoedaphic variables. We compared the performance of a feed-forward deep neural network (DNN) with a random forest (RF) regression algorithm. The DNN achieved the best estimations of biomass (r2 = 0.45) when trained with Sentinel-2 surface reflectance only. Moreover, the DNN showed a higher generalizability than RF during spatial cross-validations (i.e., calibrating and validating in different regions, r2 = 0.38 vs. 0.26). Species richness predictions by both algorithms improved when the full time series of Sentinel-2 surface reflectance values were used (highest r2 = 0.42 achieved by the DNN), but both performed poorly during spatial cross-validations. Overall, the DNN-based models were more robust than RF models, showed a lower bias and lower systematic error, and required fewer inputs. Explainability analysis indicated that red-edge and near infrared information from May and October was the most relevant to predict species richness. This study presents an important step forward in generating robust spatially explicit predictions of grassland attributes and biodiversity variables across large areas, environmental gradients, and phenological stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
是风动完成签到 ,获得积分10
4秒前
xiaosui完成签到 ,获得积分10
9秒前
kevinjy完成签到,获得积分10
11秒前
YY完成签到 ,获得积分10
12秒前
胜天半子完成签到 ,获得积分10
12秒前
madison完成签到 ,获得积分10
13秒前
13秒前
喝可乐的萝卜兔完成签到 ,获得积分10
15秒前
16秒前
和平使命应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
CLTTTt完成签到,获得积分10
23秒前
lwk205完成签到,获得积分0
23秒前
无私代容完成签到 ,获得积分10
25秒前
r41r32完成签到 ,获得积分10
27秒前
兴钬完成签到,获得积分10
29秒前
尼可刹米洛贝林完成签到,获得积分10
31秒前
风信子deon01完成签到,获得积分10
34秒前
Bart9999完成签到,获得积分10
35秒前
青山完成签到 ,获得积分10
37秒前
小巧的香氛完成签到 ,获得积分10
37秒前
39秒前
关中人完成签到,获得积分10
39秒前
等待的代容完成签到,获得积分10
40秒前
嘉心糖应助迎风竹林下采纳,获得20
43秒前
故意的问安完成签到 ,获得积分10
45秒前
仁爱的觅夏完成签到,获得积分10
45秒前
胖胖橘完成签到 ,获得积分10
50秒前
钱塘小虾米完成签到,获得积分10
50秒前
在水一方应助jialin采纳,获得10
51秒前
meng完成签到 ,获得积分10
53秒前
柏忆南完成签到 ,获得积分10
55秒前
1分钟前
善良元芹完成签到 ,获得积分10
1分钟前
武大帝77完成签到 ,获得积分10
1分钟前
韧迹完成签到 ,获得积分10
1分钟前
jialin发布了新的文献求助10
1分钟前
红雪0801完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311313
求助须知:如何正确求助?哪些是违规求助? 2944006
关于积分的说明 8516883
捐赠科研通 2619447
什么是DOI,文献DOI怎么找? 1432306
科研通“疑难数据库(出版商)”最低求助积分说明 664597
邀请新用户注册赠送积分活动 649856