Scaling of Berry-curvature monopole dominated large linear positive magnetoresistance

Berry连接和曲率 几何相位 曲率 物理 磁电阻 拓扑(电路) 凝聚态物理 缩放比例 自旋电子学 连接(主束) 磁单极子 铁磁性 磁场 量子力学 几何学 数学 组合数学
作者
Shen Zhang,Yibo Wang,Qingqi Zeng,Jianlei Shen,Xinliang Zheng,Jing Yang,Zhaosheng Wang,Chuanying Xi,Binbin Wang,Min Zhou,Rongjin Huang,Hongxiang Wei,Yuan Yao,Shouguo Wang,S. S. P. Parkin,Claudia Felser,Enke Liu,Baogen Shen
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (45) 被引量:6
标识
DOI:10.1073/pnas.2208505119
摘要

The linear positive magnetoresistance (LPMR) is a widely observed phenomenon in topological materials, which is promising for potential applications on topological spintronics. However, its mechanism remains ambiguous yet, and the effect is thus uncontrollable. Here, we report a quantitative scaling model that correlates the LPMR with the Berry curvature, based on a ferromagnetic Weyl semimetal CoS2 that bears the largest LPMR of over 500% at 2 K and 9 T, among known magnetic topological semimetals. In this system, masses of Weyl nodes existing near the Fermi level, revealed by theoretical calculations, serve as Berry-curvature monopoles and low-effective-mass carriers. Based on the Weyl picture, we propose a relation [Formula: see text], with B being the applied magnetic field and [Formula: see text] the average Berry curvature near the Fermi surface, and further introduce temperature factor to both MR/B slope (MR per unit field) and anomalous Hall conductivity, which establishes the connection between the model and experimental measurements. A clear picture of the linearly slowing down of carriers, i.e., the LPMR effect, is demonstrated under the cooperation of the k-space Berry curvature and real-space magnetic field. Our study not only provides experimental evidence of Berry curvature-induced LPMR but also promotes the common understanding and functional designing of the large Berry-curvature MR in topological Dirac/Weyl systems for magnetic sensing or information storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xxx发布了新的文献求助10
1秒前
1秒前
胡说八道完成签到 ,获得积分10
1秒前
高兴帅哥完成签到,获得积分10
2秒前
4秒前
aslink完成签到,获得积分10
4秒前
Amon完成签到,获得积分10
4秒前
啊娴仔发布了新的文献求助10
4秒前
camellia发布了新的文献求助10
4秒前
万能图书馆应助狂野觅云采纳,获得10
4秒前
充电宝应助zino采纳,获得10
5秒前
5秒前
小可发布了新的文献求助10
5秒前
英姑应助酷酷的起眸采纳,获得10
6秒前
Blue_Pig发布了新的文献求助10
6秒前
科研小白完成签到,获得积分10
7秒前
sooya发布了新的文献求助20
8秒前
8秒前
tiddler完成签到,获得积分10
8秒前
科研通AI2S应助滴滴采纳,获得10
8秒前
wgx完成签到,获得积分20
8秒前
9秒前
爱静静应助Keep采纳,获得10
9秒前
9秒前
9秒前
小马甲应助韭菜采纳,获得10
10秒前
MADKAI发布了新的文献求助10
10秒前
机智的白猫完成签到,获得积分10
10秒前
李健的小迷弟应助xxx采纳,获得10
10秒前
杜杜完成签到,获得积分10
10秒前
NexusExplorer应助新的心跳采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
JamesPei应助小可采纳,获得10
12秒前
粗暴的醉卉完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759