Machine learning based personalized drug response prediction for lung cancer patients

吉非替尼 埃罗替尼 肺癌 表皮生长因子受体 药品 医学 表皮生长因子受体抑制剂 机器学习 抗药性 肿瘤科 人工智能 计算机科学 内科学 癌症 药理学 生物 微生物学
作者
Rizwan Qureshi,Syed Abdullah Basit,Jawwad Ahmed Shamsi,Xinqi Fan,Mehmood Nawaz,Hong Yan,Tanvir Alam
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:18
标识
DOI:10.1038/s41598-022-23649-0
摘要

Abstract Lung cancers with a mutated epidermal growth factor receptor (EGFR) are a major contributor to cancer fatalities globally. Targeted tyrosine kinase inhibitors (TKIs) have been developed against EGFR and show encouraging results for survival rate and quality of life. However, drug resistance may affect treatment plans and treatment efficacy may be lost after about a year. Predicting the response to EGFR-TKIs for EGFR-mutated lung cancer patients is a key research area. In this study, we propose a personalized drug response prediction model (PDRP), based on molecular dynamics simulations and machine learning, to predict the response of first generation FDA-approved small molecule EGFR-TKIs, Gefitinib/Erlotinib, in lung cancer patients. The patient’s mutation status is taken into consideration in molecular dynamics (MD) simulation. Each patient’s unique mutation status was modeled considering MD simulation to extract molecular-level geometric features. Moreover, additional clinical features were incorporated into machine learning model for drug response prediction. The complete feature set includes demographic and clinical information (DCI), geometrical properties of the drug-target binding site, and the binding free energy of the drug-target complex from the MD simulation. PDRP incorporates an XGBoost classifier, which achieves state-of-the-art performance with 97.5% accuracy, 93% recall, 96.5% precision, and 94% F1-score, for a 4-class drug response prediction task. We found that modeling the geometry of the binding pocket combined with binding free energy is a good predictor for drug response. However, we observed that clinical information had a little impact on the performance of the model. The proposed model could be tested on other types of cancers. We believe PDRP will support the planning of effective treatment regimes based on clinical-genomic information. The source code and related files are available on GitHub at: https://github.com/rizwanqureshi123/PDRP/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助跳跃的谷丝采纳,获得10
1秒前
半斤发布了新的文献求助10
2秒前
2秒前
凡仔发布了新的文献求助10
3秒前
晒暖发布了新的文献求助10
3秒前
4秒前
4秒前
祥瑞完成签到,获得积分10
5秒前
积极丹南发布了新的文献求助10
5秒前
我的人生太多雨季完成签到,获得积分10
5秒前
orixero应助孤独的又莲采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
聪慧雪糕发布了新的文献求助10
8秒前
8秒前
萧一发布了新的文献求助10
9秒前
爆米花应助嘻嘻采纳,获得10
10秒前
10秒前
耳机单蹦发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
11111完成签到,获得积分10
13秒前
dc完成签到,获得积分10
13秒前
15秒前
16秒前
大美女完成签到,获得积分10
16秒前
16秒前
假装有昵称完成签到,获得积分10
16秒前
17秒前
cc完成签到 ,获得积分10
17秒前
科研通AI5应助凡仔采纳,获得10
18秒前
18秒前
嘻嘻发布了新的文献求助10
18秒前
18秒前
丶呆久自然萌完成签到,获得积分10
20秒前
老人与狗完成签到,获得积分10
20秒前
糊涂的友安完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助20
21秒前
djiwisksk66发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915310
求助须知:如何正确求助?哪些是违规求助? 4189303
关于积分的说明 13010692
捐赠科研通 3958418
什么是DOI,文献DOI怎么找? 2170197
邀请新用户注册赠送积分活动 1188420
关于科研通互助平台的介绍 1096200