Machine learning based personalized drug response prediction for lung cancer patients

吉非替尼 埃罗替尼 肺癌 表皮生长因子受体 药品 医学 表皮生长因子受体抑制剂 机器学习 抗药性 肿瘤科 人工智能 计算机科学 内科学 癌症 药理学 生物 微生物学
作者
Rizwan Qureshi,Syed Abdullah Basit,Jawwad Ahmed Shamsi,Xinqi Fan,Mehmood Nawaz,Hong Yan,Tanvir Alam
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:18
标识
DOI:10.1038/s41598-022-23649-0
摘要

Abstract Lung cancers with a mutated epidermal growth factor receptor (EGFR) are a major contributor to cancer fatalities globally. Targeted tyrosine kinase inhibitors (TKIs) have been developed against EGFR and show encouraging results for survival rate and quality of life. However, drug resistance may affect treatment plans and treatment efficacy may be lost after about a year. Predicting the response to EGFR-TKIs for EGFR-mutated lung cancer patients is a key research area. In this study, we propose a personalized drug response prediction model (PDRP), based on molecular dynamics simulations and machine learning, to predict the response of first generation FDA-approved small molecule EGFR-TKIs, Gefitinib/Erlotinib, in lung cancer patients. The patient’s mutation status is taken into consideration in molecular dynamics (MD) simulation. Each patient’s unique mutation status was modeled considering MD simulation to extract molecular-level geometric features. Moreover, additional clinical features were incorporated into machine learning model for drug response prediction. The complete feature set includes demographic and clinical information (DCI), geometrical properties of the drug-target binding site, and the binding free energy of the drug-target complex from the MD simulation. PDRP incorporates an XGBoost classifier, which achieves state-of-the-art performance with 97.5% accuracy, 93% recall, 96.5% precision, and 94% F1-score, for a 4-class drug response prediction task. We found that modeling the geometry of the binding pocket combined with binding free energy is a good predictor for drug response. However, we observed that clinical information had a little impact on the performance of the model. The proposed model could be tested on other types of cancers. We believe PDRP will support the planning of effective treatment regimes based on clinical-genomic information. The source code and related files are available on GitHub at: https://github.com/rizwanqureshi123/PDRP/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甘草三七完成签到,获得积分10
刚刚
又又完成签到,获得积分10
1秒前
苗广山发布了新的文献求助10
1秒前
RY完成签到,获得积分10
2秒前
桐桐应助微笑的千山采纳,获得10
2秒前
2秒前
整齐香烟完成签到,获得积分20
3秒前
我爱学习完成签到,获得积分10
3秒前
liziming完成签到,获得积分10
4秒前
所所应助swh采纳,获得10
4秒前
鲁路修完成签到,获得积分10
5秒前
温暖寻雪完成签到,获得积分10
6秒前
6秒前
乐观怀蝶完成签到,获得积分20
6秒前
6秒前
韦巧完成签到,获得积分10
7秒前
8秒前
传奇3应助YU采纳,获得10
8秒前
小青蛙OA发布了新的文献求助10
9秒前
9秒前
温暖寻雪发布了新的文献求助10
9秒前
徐梁家八蛋完成签到,获得积分10
10秒前
10秒前
可爱的函函应助szl采纳,获得10
10秒前
愉快彩虹发布了新的文献求助10
10秒前
11秒前
万能图书馆应助段dwh采纳,获得10
11秒前
11秒前
六月完成签到,获得积分10
11秒前
11秒前
deallyxyz应助makabaka采纳,获得10
11秒前
12秒前
Cruffin发布了新的文献求助10
12秒前
麦满分完成签到,获得积分10
12秒前
13秒前
李健应助隔壁海绵宝宝采纳,获得10
13秒前
Owen应助爱笑夜蕾采纳,获得10
13秒前
lzj001983完成签到,获得积分10
13秒前
顾矜应助ludong_0采纳,获得10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958441
求助须知:如何正确求助?哪些是违规求助? 3504750
关于积分的说明 11119733
捐赠科研通 3235904
什么是DOI,文献DOI怎么找? 1788601
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802605