清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning based personalized drug response prediction for lung cancer patients

吉非替尼 埃罗替尼 肺癌 表皮生长因子受体 药品 医学 表皮生长因子受体抑制剂 机器学习 抗药性 肿瘤科 人工智能 计算机科学 内科学 癌症 药理学 生物 微生物学
作者
Rizwan Qureshi,Syed Abdullah Basit,Jawwad Ahmed Shamsi,Xinqi Fan,Mehmood Nawaz,Hong Yan,Tanvir Alam
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:18
标识
DOI:10.1038/s41598-022-23649-0
摘要

Abstract Lung cancers with a mutated epidermal growth factor receptor (EGFR) are a major contributor to cancer fatalities globally. Targeted tyrosine kinase inhibitors (TKIs) have been developed against EGFR and show encouraging results for survival rate and quality of life. However, drug resistance may affect treatment plans and treatment efficacy may be lost after about a year. Predicting the response to EGFR-TKIs for EGFR-mutated lung cancer patients is a key research area. In this study, we propose a personalized drug response prediction model (PDRP), based on molecular dynamics simulations and machine learning, to predict the response of first generation FDA-approved small molecule EGFR-TKIs, Gefitinib/Erlotinib, in lung cancer patients. The patient’s mutation status is taken into consideration in molecular dynamics (MD) simulation. Each patient’s unique mutation status was modeled considering MD simulation to extract molecular-level geometric features. Moreover, additional clinical features were incorporated into machine learning model for drug response prediction. The complete feature set includes demographic and clinical information (DCI), geometrical properties of the drug-target binding site, and the binding free energy of the drug-target complex from the MD simulation. PDRP incorporates an XGBoost classifier, which achieves state-of-the-art performance with 97.5% accuracy, 93% recall, 96.5% precision, and 94% F1-score, for a 4-class drug response prediction task. We found that modeling the geometry of the binding pocket combined with binding free energy is a good predictor for drug response. However, we observed that clinical information had a little impact on the performance of the model. The proposed model could be tested on other types of cancers. We believe PDRP will support the planning of effective treatment regimes based on clinical-genomic information. The source code and related files are available on GitHub at: https://github.com/rizwanqureshi123/PDRP/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿烂而孤独的八戒完成签到 ,获得积分0
26秒前
lucky完成签到 ,获得积分10
29秒前
绿色猫猫头完成签到 ,获得积分10
46秒前
CodeCraft应助斯提亚拉采纳,获得10
47秒前
wrl2023完成签到,获得积分10
54秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
Qing完成签到 ,获得积分10
1分钟前
nextconnie完成签到,获得积分10
1分钟前
1分钟前
斯提亚拉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助liwen采纳,获得10
2分钟前
2分钟前
龚文亮完成签到,获得积分10
2分钟前
慕青应助狂野宛凝采纳,获得10
2分钟前
常有李完成签到,获得积分10
2分钟前
2分钟前
殷勤的紫槐应助科研通管家采纳,获得200
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
tt完成签到,获得积分10
4分钟前
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
4分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
狂野宛凝发布了新的文献求助10
5分钟前
5分钟前
5分钟前
领导范儿应助Gryphon采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
Gryphon发布了新的文献求助10
6分钟前
打打应助Gryphon采纳,获得10
6分钟前
6分钟前
liwen发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554955
求助须知:如何正确求助?哪些是违规求助? 4639554
关于积分的说明 14656343
捐赠科研通 4581473
什么是DOI,文献DOI怎么找? 2512827
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503