Determining Zn(II) Binding Affinities of the YiiP–Zinc Transporter and Uno Ferro Single Chain (UFsc) Protein with a Novel Modification of the PKA17 Software

亲缘关系 化学 结合亲和力 结晶学 离解常数 立体化学 计算化学 生物化学 受体 有机化学
作者
George A. Kaminski,Greggory W. Raymond
出处
期刊:Journal of computational biophysics and chemistry [World Scientific]
卷期号:22 (02): 207-218
标识
DOI:10.1142/s2737416523500126
摘要

In this paper, we report results of using molecular modeling to assign specific Zn(II) binding affinities to the known binding sites of the YiiP–zinc transporter. YiiP is a cation-diffusion facilitator. It facilitates the transmembrane exchange of Zn(II) ions and protons. The crystal structure of this protein is known. There are several zinc binding sites, and some of the Zn(II) binding affinities have been measured, but the value of all the binding/dissociation constants and the exact assignment of the sites with these affinities are not completely understood. We have recently developed a fast and accurate coarse-grain framework for predicting protein pKa shifts named PKA17. In this paper, we report extending of the same technique to produce a methodology capable of quickly predicting metal–protein binding affinities. The new software has been named M21. It has been tested on several zinc–protein binding cases, and the average unsigned error in the binding energies has been found to be 2.17[Formula: see text]kcal/mol vs. the AMBER average error of 3.49[Formula: see text]kcal/mol ([Formula: see text] ratio of ca. 30 vs. the AMBER one of 330). We have then applied the M21 methodology to calculate and assign the YiiP–Zn(II) binding constants of [Formula: see text]2.31[Formula: see text]13.28[Formula: see text]kcal/mol ([Formula: see text] values from [Formula: see text] to [Formula: see text]). We have also undertaken additional modifications of parameters. On one hand, we have included another 11 zinc binding proteins in our target fitting set. These were the Uno Ferro single chain (UFsc) and its modifications created by the Professor Olga Makhlynets group. On the other hand, we have significantly reduced the number of fittable parameters in order to further reduce the possibility of overfitting and to demonstrate the stability of the technique. The final parameter set has only eight adjustable parameters (as opposed to the above case with 17 independent parameters). The average error for the binding cases compared with the same AMBER test set as above did not change much and was still very low at 2.17[Formula: see text]kcal/mol. We believe that these results not only further validate the presented methodology but also point out a promising direction for potential multiple joint experimental and computational collaborative projects. Both PKA17 and M21 software have been deployed with web-based interfaces at http://kaminski.wpi.edu/PKA17/pka_calc.html and http://kaminski.wpi.edu/METAL/metal_calc.html , respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加载文献别卡了完成签到,获得积分10
3秒前
一由天完成签到,获得积分10
6秒前
八森木完成签到 ,获得积分10
8秒前
王桑完成签到 ,获得积分10
8秒前
8秒前
nini完成签到,获得积分10
9秒前
永毅完成签到 ,获得积分10
11秒前
兜兜揣满糖完成签到 ,获得积分10
12秒前
chengya完成签到,获得积分10
12秒前
停摆的指针完成签到,获得积分0
14秒前
明天肯定学习完成签到,获得积分10
15秒前
cc2001完成签到,获得积分10
16秒前
芝麻完成签到,获得积分10
17秒前
若水完成签到,获得积分0
18秒前
席以亦完成签到,获得积分10
18秒前
任伟超完成签到,获得积分10
19秒前
Anonymous发布了新的文献求助10
19秒前
一心向雨完成签到,获得积分20
20秒前
xiao柒柒柒完成签到,获得积分10
20秒前
zlx完成签到,获得积分10
21秒前
Xwu完成签到,获得积分10
22秒前
高兴的老黑完成签到,获得积分10
22秒前
john应助cc2001采纳,获得10
25秒前
Shueason完成签到 ,获得积分10
26秒前
科研通AI2S应助Xwu采纳,获得10
26秒前
小奕完成签到,获得积分10
28秒前
28秒前
28秒前
集典完成签到 ,获得积分10
28秒前
小张完成签到 ,获得积分10
29秒前
神勇友灵完成签到,获得积分10
30秒前
30秒前
坦率绮山完成签到 ,获得积分10
32秒前
一心向雨发布了新的文献求助10
32秒前
刘晓伟完成签到,获得积分10
32秒前
33秒前
吴大语完成签到,获得积分10
33秒前
34秒前
Allen完成签到 ,获得积分10
34秒前
夏来应助科研通管家采纳,获得10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134053
求助须知:如何正确求助?哪些是违规求助? 2784853
关于积分的说明 7768983
捐赠科研通 2440314
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792