Determining Zn(II) Binding Affinities of the YiiP–Zinc Transporter and Uno Ferro Single Chain (UFsc) Protein with a Novel Modification of the PKA17 Software

亲缘关系 化学 结合亲和力 结晶学 离解常数 立体化学 计算化学 生物化学 受体 有机化学
作者
George A. Kaminski,Greggory W. Raymond
出处
期刊:Journal of computational biophysics and chemistry [World Scientific]
卷期号:22 (02): 207-218
标识
DOI:10.1142/s2737416523500126
摘要

In this paper, we report results of using molecular modeling to assign specific Zn(II) binding affinities to the known binding sites of the YiiP–zinc transporter. YiiP is a cation-diffusion facilitator. It facilitates the transmembrane exchange of Zn(II) ions and protons. The crystal structure of this protein is known. There are several zinc binding sites, and some of the Zn(II) binding affinities have been measured, but the value of all the binding/dissociation constants and the exact assignment of the sites with these affinities are not completely understood. We have recently developed a fast and accurate coarse-grain framework for predicting protein pKa shifts named PKA17. In this paper, we report extending of the same technique to produce a methodology capable of quickly predicting metal–protein binding affinities. The new software has been named M21. It has been tested on several zinc–protein binding cases, and the average unsigned error in the binding energies has been found to be 2.17[Formula: see text]kcal/mol vs. the AMBER average error of 3.49[Formula: see text]kcal/mol ([Formula: see text] ratio of ca. 30 vs. the AMBER one of 330). We have then applied the M21 methodology to calculate and assign the YiiP–Zn(II) binding constants of [Formula: see text]2.31[Formula: see text]13.28[Formula: see text]kcal/mol ([Formula: see text] values from [Formula: see text] to [Formula: see text]). We have also undertaken additional modifications of parameters. On one hand, we have included another 11 zinc binding proteins in our target fitting set. These were the Uno Ferro single chain (UFsc) and its modifications created by the Professor Olga Makhlynets group. On the other hand, we have significantly reduced the number of fittable parameters in order to further reduce the possibility of overfitting and to demonstrate the stability of the technique. The final parameter set has only eight adjustable parameters (as opposed to the above case with 17 independent parameters). The average error for the binding cases compared with the same AMBER test set as above did not change much and was still very low at 2.17[Formula: see text]kcal/mol. We believe that these results not only further validate the presented methodology but also point out a promising direction for potential multiple joint experimental and computational collaborative projects. Both PKA17 and M21 software have been deployed with web-based interfaces at http://kaminski.wpi.edu/PKA17/pka_calc.html and http://kaminski.wpi.edu/METAL/metal_calc.html , respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lemenchichi完成签到,获得积分10
1秒前
好好哒完成签到,获得积分10
1秒前
1秒前
aldehyde举报kkk求助涉嫌违规
1秒前
可爱的函函应助甜甜玫瑰采纳,获得10
2秒前
lei完成签到,获得积分10
2秒前
4秒前
lei发布了新的文献求助10
5秒前
情怀应助催化打工人采纳,获得10
5秒前
雨纷纷发布了新的文献求助10
6秒前
小乐关注了科研通微信公众号
8秒前
8秒前
8秒前
8秒前
10秒前
Pamela发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
小醋坛子丶完成签到 ,获得积分10
12秒前
12秒前
钙离子发布了新的文献求助10
12秒前
blind发布了新的文献求助10
13秒前
13秒前
XYZ发布了新的文献求助10
13秒前
无花果应助科研通管家采纳,获得10
14秒前
核桃应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
Xiaoxiao应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
15秒前
宋星慧遥发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980258
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220452
捐赠科研通 3261658
什么是DOI,文献DOI怎么找? 1800882
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807234