Determining Zn(II) Binding Affinities of the YiiP–Zinc Transporter and Uno Ferro Single Chain (UFsc) Protein with a Novel Modification of the PKA17 Software

亲缘关系 化学 结合亲和力 结晶学 离解常数 立体化学 计算化学 生物化学 受体 有机化学
作者
George A. Kaminski,Greggory W. Raymond
出处
期刊:Journal of computational biophysics and chemistry [World Scientific]
卷期号:22 (02): 207-218
标识
DOI:10.1142/s2737416523500126
摘要

In this paper, we report results of using molecular modeling to assign specific Zn(II) binding affinities to the known binding sites of the YiiP–zinc transporter. YiiP is a cation-diffusion facilitator. It facilitates the transmembrane exchange of Zn(II) ions and protons. The crystal structure of this protein is known. There are several zinc binding sites, and some of the Zn(II) binding affinities have been measured, but the value of all the binding/dissociation constants and the exact assignment of the sites with these affinities are not completely understood. We have recently developed a fast and accurate coarse-grain framework for predicting protein pKa shifts named PKA17. In this paper, we report extending of the same technique to produce a methodology capable of quickly predicting metal–protein binding affinities. The new software has been named M21. It has been tested on several zinc–protein binding cases, and the average unsigned error in the binding energies has been found to be 2.17[Formula: see text]kcal/mol vs. the AMBER average error of 3.49[Formula: see text]kcal/mol ([Formula: see text] ratio of ca. 30 vs. the AMBER one of 330). We have then applied the M21 methodology to calculate and assign the YiiP–Zn(II) binding constants of [Formula: see text]2.31[Formula: see text]13.28[Formula: see text]kcal/mol ([Formula: see text] values from [Formula: see text] to [Formula: see text]). We have also undertaken additional modifications of parameters. On one hand, we have included another 11 zinc binding proteins in our target fitting set. These were the Uno Ferro single chain (UFsc) and its modifications created by the Professor Olga Makhlynets group. On the other hand, we have significantly reduced the number of fittable parameters in order to further reduce the possibility of overfitting and to demonstrate the stability of the technique. The final parameter set has only eight adjustable parameters (as opposed to the above case with 17 independent parameters). The average error for the binding cases compared with the same AMBER test set as above did not change much and was still very low at 2.17[Formula: see text]kcal/mol. We believe that these results not only further validate the presented methodology but also point out a promising direction for potential multiple joint experimental and computational collaborative projects. Both PKA17 and M21 software have been deployed with web-based interfaces at http://kaminski.wpi.edu/PKA17/pka_calc.html and http://kaminski.wpi.edu/METAL/metal_calc.html , respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑沧浪亭完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
老孟完成签到,获得积分10
2秒前
西瓜完成签到,获得积分10
2秒前
2秒前
卡卡罗特发布了新的文献求助10
2秒前
3秒前
wangwang完成签到,获得积分10
3秒前
4秒前
渊_发布了新的文献求助10
5秒前
慕青应助阳光大山采纳,获得10
5秒前
酷酷念波发布了新的文献求助10
5秒前
21发布了新的文献求助10
6秒前
SSYAN发布了新的文献求助10
6秒前
7秒前
7秒前
Yami发布了新的文献求助10
7秒前
guugen发布了新的文献求助10
8秒前
10秒前
风中冰香应助秀儿采纳,获得10
10秒前
斯文尔芙完成签到,获得积分10
10秒前
07发布了新的文献求助10
10秒前
晓生完成签到,获得积分10
10秒前
hh发布了新的文献求助10
10秒前
渊_完成签到,获得积分10
11秒前
某博完成签到 ,获得积分10
11秒前
Orange应助酷酷念波采纳,获得10
12秒前
川农辅导员完成签到,获得积分10
13秒前
zzw发布了新的文献求助10
13秒前
SSYAN完成签到,获得积分10
13秒前
烟花应助斯文尔芙采纳,获得10
15秒前
mingming关注了科研通微信公众号
15秒前
leonieliu完成签到 ,获得积分10
15秒前
18秒前
00发布了新的文献求助10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536474
求助须知:如何正确求助?哪些是违规求助? 4624146
关于积分的说明 14590801
捐赠科研通 4564532
什么是DOI,文献DOI怎么找? 2501843
邀请新用户注册赠送积分活动 1480597
关于科研通互助平台的介绍 1451838