激光雷达
计算机科学
计算机视觉
人工智能
校准
遥感
探测器
像素
透视图(图形)
地理
数学
电信
统计
作者
Hao Yi,Bo Liu,Bin Zhao,Enhai Liu
摘要
Recent advances in the fields of driverless cars, intelligent robots and remote-sensing measurement have shown that the use of LiDAR fused with cameras can provide more comprehensive and reliable sensing of surroundings. However, since it is difficult to extract features from sparse LiDAR data to create 3D–2D correspondences, finding a method for accurate external calibration of all types of LiDAR with cameras has become a research hotspot. To solve this problem, this paper proposes a method to directly obtain the 3D–2D correspondences of LiDAR–camera systems to complete accurate calibration. In this method, a laser detector card is used as an auxiliary tool to directly obtain the correspondences between laser spots and image pixels, thus solving the problem of difficulty in extracting features from sparse LiDAR data. In addition, a two-stage framework from coarse to fine is designed in this paper, which not only can solve the perspective-n-point problem with observation errors, but also requires only four LiDAR data points and the corresponding pixel information for more accurate external calibration. Finally, extensive simulations and experimental results show that the effectiveness and accuracy of our method are better than existing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI