Axial Cross Attention Meets CNN: Bibranch Fusion Network for Change Detection

计算机科学 人工智能 增采样 卷积神经网络 特征提取 保险丝(电气) 模式识别(心理学) 计算机视觉 像素 图像(数学) 电气工程 工程类
作者
Lei Song,Min Xia,Liguo Weng,Haifeng Lin,Ming Qian,Binyu Chen
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 21-32 被引量:53
标识
DOI:10.1109/jstars.2022.3224081
摘要

In the previous years, vision transformer has demonstrated a global information extraction capability in the field of computer vision that convolutional neural network (CNN) lacks. Due to the lack of inductive bias in vision transformer, it requires a large amount of data to support its training. In the field of remote sensing, it costs a lot to obtain a significant number of high-resolution remote sensing images. Most existing change detection networks based on deep learning rely heavily on the CNN, which cannot effectively utilize the long-distance dependence between pixels for difference discrimination. Therefore, this work aims to use a high-performance vision transformer to conduct change detection research with limited data. A bibranch fusion network based on axial cross attention (ACABFNet) is proposed. The network extracts local and global information of images through the CNN branch and transformer branch, respectively, and then, fuses local and global features by the bidirectional fusion approach. In the upsampling stage, similar feature information and difference feature information of the two branches are explicitly generated by feature addition and feature subtraction. Considering that the self-attention mechanism is not efficient enough for global attention over small datasets, we propose the axial cross attention. First, global attention along the height and width dimensions of images is performed respectively, and then cross attention is used to fuse the global feature information along two dimensions. Compared with the original self-attention, the structure is more graphics processing unit friendly and efficient. Experimental results on three datasets reveal that the ACABFNet outperforms existing change detection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ky幻影发布了新的文献求助10
1秒前
1秒前
李健应助waoller1采纳,获得10
2秒前
英俊的铭应助waoller1采纳,获得10
2秒前
2秒前
cyn0762完成签到 ,获得积分10
2秒前
wangzhen完成签到,获得积分20
3秒前
3秒前
3秒前
如梦如画发布了新的文献求助10
3秒前
CipherSage应助Ronnie采纳,获得10
5秒前
6秒前
wangzhen发布了新的文献求助10
8秒前
Aurora发布了新的文献求助10
9秒前
Arbor发布了新的文献求助10
10秒前
14秒前
San万完成签到,获得积分10
14秒前
sci完成签到,获得积分10
15秒前
乐乐应助好看的鸵鸟采纳,获得10
16秒前
Ronnie发布了新的文献求助10
18秒前
活力山蝶应助麻辣牛肉采纳,获得10
19秒前
20秒前
20秒前
ZJFL完成签到,获得积分10
21秒前
22秒前
2331547774发布了新的文献求助10
22秒前
湘华发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
木头人应助酷酷羊乌云采纳,获得10
24秒前
烟花应助听话的白易采纳,获得10
24秒前
wisper发布了新的文献求助10
25秒前
herococa应助陶醉山灵采纳,获得10
26秒前
26秒前
su123发布了新的文献求助10
27秒前
28秒前
30秒前
可爱的函函应助加快步伐采纳,获得10
31秒前
内向怀曼完成签到,获得积分10
32秒前
星辰大海应助湘华采纳,获得10
32秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341