Axial Cross Attention Meets CNN: Bibranch Fusion Network for Change Detection

计算机科学 人工智能 增采样 卷积神经网络 特征提取 保险丝(电气) 模式识别(心理学) 计算机视觉 像素 图像(数学) 电气工程 工程类
作者
Lei Song,Min Xia,Liguo Weng,Haifeng Lin,Ming Qian,Binyu Chen
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 21-32 被引量:53
标识
DOI:10.1109/jstars.2022.3224081
摘要

In the previous years, vision transformer has demonstrated a global information extraction capability in the field of computer vision that convolutional neural network (CNN) lacks. Due to the lack of inductive bias in vision transformer, it requires a large amount of data to support its training. In the field of remote sensing, it costs a lot to obtain a significant number of high-resolution remote sensing images. Most existing change detection networks based on deep learning rely heavily on the CNN, which cannot effectively utilize the long-distance dependence between pixels for difference discrimination. Therefore, this work aims to use a high-performance vision transformer to conduct change detection research with limited data. A bibranch fusion network based on axial cross attention (ACABFNet) is proposed. The network extracts local and global information of images through the CNN branch and transformer branch, respectively, and then, fuses local and global features by the bidirectional fusion approach. In the upsampling stage, similar feature information and difference feature information of the two branches are explicitly generated by feature addition and feature subtraction. Considering that the self-attention mechanism is not efficient enough for global attention over small datasets, we propose the axial cross attention. First, global attention along the height and width dimensions of images is performed respectively, and then cross attention is used to fuse the global feature information along two dimensions. Compared with the original self-attention, the structure is more graphics processing unit friendly and efficient. Experimental results on three datasets reveal that the ACABFNet outperforms existing change detection algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jesmblaq完成签到,获得积分10
1秒前
文静的夜阑完成签到,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
苹果有毒发布了新的文献求助10
2秒前
小石头完成签到,获得积分10
4秒前
5秒前
13013523252发布了新的文献求助10
5秒前
Jasper应助Walden采纳,获得10
5秒前
目土土完成签到 ,获得积分10
8秒前
海盐气泡水完成签到,获得积分10
9秒前
10秒前
十二十三完成签到 ,获得积分10
10秒前
11秒前
火星完成签到,获得积分20
11秒前
11秒前
13秒前
蓝天发布了新的文献求助10
16秒前
柔弱白羊发布了新的文献求助10
17秒前
Rosie发布了新的文献求助10
17秒前
18秒前
万能图书馆应助陈帅采纳,获得10
18秒前
赘婿应助lhy采纳,获得10
18秒前
长安心动明月完成签到 ,获得积分10
19秒前
Jared应助michael采纳,获得10
20秒前
roy完成签到,获得积分10
20秒前
20秒前
东郭迎松发布了新的文献求助10
21秒前
YYY发布了新的文献求助10
22秒前
苹果有毒完成签到,获得积分10
22秒前
23秒前
隋阳完成签到 ,获得积分10
24秒前
等待完成签到 ,获得积分10
26秒前
27秒前
27秒前
梦茵发布了新的文献求助10
28秒前
28秒前
Criminology34应助从容的尔云采纳,获得10
29秒前
李爱国应助伟大毕业旅程采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812