Axial Cross Attention Meets CNN: Bibranch Fusion Network for Change Detection

计算机科学 人工智能 增采样 卷积神经网络 特征提取 保险丝(电气) 模式识别(心理学) 计算机视觉 像素 图像(数学) 电气工程 工程类
作者
Lei Song,Min Xia,Liguo Weng,Haifeng Lin,Ming Qian,Binyu Chen
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 21-32 被引量:53
标识
DOI:10.1109/jstars.2022.3224081
摘要

In the previous years, vision transformer has demonstrated a global information extraction capability in the field of computer vision that convolutional neural network (CNN) lacks. Due to the lack of inductive bias in vision transformer, it requires a large amount of data to support its training. In the field of remote sensing, it costs a lot to obtain a significant number of high-resolution remote sensing images. Most existing change detection networks based on deep learning rely heavily on the CNN, which cannot effectively utilize the long-distance dependence between pixels for difference discrimination. Therefore, this work aims to use a high-performance vision transformer to conduct change detection research with limited data. A bibranch fusion network based on axial cross attention (ACABFNet) is proposed. The network extracts local and global information of images through the CNN branch and transformer branch, respectively, and then, fuses local and global features by the bidirectional fusion approach. In the upsampling stage, similar feature information and difference feature information of the two branches are explicitly generated by feature addition and feature subtraction. Considering that the self-attention mechanism is not efficient enough for global attention over small datasets, we propose the axial cross attention. First, global attention along the height and width dimensions of images is performed respectively, and then cross attention is used to fuse the global feature information along two dimensions. Compared with the original self-attention, the structure is more graphics processing unit friendly and efficient. Experimental results on three datasets reveal that the ACABFNet outperforms existing change detection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助zhaopeipei采纳,获得10
1秒前
CXS完成签到,获得积分10
1秒前
Sienna发布了新的文献求助10
2秒前
LZY完成签到,获得积分10
3秒前
4秒前
王越应助周济采纳,获得10
5秒前
memorise发布了新的文献求助10
6秒前
小二郎应助和谐白羊采纳,获得10
6秒前
我就是我完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Lea应助狂野的蜡烛采纳,获得50
8秒前
10秒前
Lucas应助可耐的冰棍采纳,获得10
11秒前
totpto发布了新的文献求助10
11秒前
Sienna完成签到,获得积分10
12秒前
搜集达人应助zzz采纳,获得10
13秒前
耶耶耶发布了新的文献求助10
14秒前
六斤米完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
luojh03发布了新的文献求助10
16秒前
科研女郎完成签到 ,获得积分10
16秒前
17秒前
柑橘完成签到 ,获得积分10
18秒前
19秒前
19秒前
totpto完成签到,获得积分10
20秒前
aa121599发布了新的文献求助10
20秒前
22秒前
22秒前
Ethan发布了新的文献求助10
22秒前
斯文败类应助自由的凛采纳,获得10
23秒前
高兴可乐完成签到,获得积分10
24秒前
亲鱼发布了新的文献求助10
24秒前
24秒前
休眠火山发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4535636
求助须知:如何正确求助?哪些是违规求助? 3971377
关于积分的说明 12303880
捐赠科研通 3638137
什么是DOI,文献DOI怎么找? 2003027
邀请新用户注册赠送积分活动 1038553
科研通“疑难数据库(出版商)”最低求助积分说明 927944