A Multitask learning model for multimodal sarcasm, sentiment and emotion recognition in conversations

讽刺 计算机科学 对话 情绪分析 人工智能 自然语言处理 杠杆(统计) 多任务学习 认知心理学 机器学习 人机交互 心理学 任务(项目管理) 讽刺 沟通 艺术 文学类 经济 管理
作者
Yazhou Zhang,Jinglin Wang,Yaochen Liu,Lu Rong,Qian Zheng,Dawei Song,Prayag Tiwari,Jing Qin
出处
期刊:Information Fusion [Elsevier BV]
卷期号:93: 282-301 被引量:50
标识
DOI:10.1016/j.inffus.2023.01.005
摘要

Sarcasm, sentiment and emotion are tightly coupled with each other in that one helps the understanding of another, which makes the joint recognition of sarcasm, sentiment and emotion in conversation a focus in the research in artificial intelligence (AI) and affective computing. Three main challenges exist: Context dependency, multimodal fusion and multitask interaction. However, most of the existing works fail to explicitly leverage and model the relationships among related tasks. In this paper, we aim to generically address the three problems with a multimodal joint framework. We thus propose a multimodal multitask learning model based on the encoder–decoder architecture, termed M2Seq2Seq. At the heart of the encoder module are two attention mechanisms, i.e., intramodal (Ia) attention and intermodal (Ie) attention. Ia attention is designed to capture the contextual dependency between adjacent utterances, while Ie attention is designed to model multimodal interactions. In contrast, we design two kinds of multitask learning (MTL) decoders, i.e., single-level and multilevel decoders, to explore their potential. More specifically, the core of a single-level decoder is a masked outer-modal (Or) self-attention mechanism. The main motivation of Or attention is to explicitly model the interdependence among the tasks of sarcasm, sentiment and emotion recognition. The core of the multilevel decoder contains the shared gating and task-specific gating networks. Comprehensive experiments on four bench datasets, MUStARD, Memotion, CMU-MOSEI and MELD, prove the effectiveness of M2Seq2Seq over state-of-the-art baselines (e.g., CM-GCN, A-MTL) with significant improvements of 1.9%, 2.0%, 5.0%, 0.8%, 4.3%, 3.1%, 2.8%, 1.0%, 1.7% and 2.8% in terms of Micro F1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专一的鸡翅完成签到 ,获得积分10
1秒前
za==应助guguhuhu采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
daheeeee发布了新的文献求助10
1秒前
2秒前
玉子莹发布了新的文献求助30
2秒前
3秒前
积极晓绿完成签到,获得积分10
3秒前
ssss完成签到,获得积分10
3秒前
清秀颜演完成签到,获得积分10
3秒前
pbj发布了新的文献求助10
3秒前
英俊的铭应助Keira采纳,获得10
3秒前
dow完成签到,获得积分10
3秒前
打打应助QQ采纳,获得10
3秒前
xiaoliu完成签到,获得积分10
4秒前
zhuyimin913发布了新的文献求助10
4秒前
贝塔发布了新的文献求助10
4秒前
fragile完成签到,获得积分10
4秒前
wangsiyuan完成签到 ,获得积分10
5秒前
研友_莫笑旋完成签到,获得积分10
5秒前
ming123ah完成签到,获得积分10
5秒前
Rondab应助玉七采纳,获得10
6秒前
6秒前
6秒前
奋斗冬萱完成签到,获得积分10
7秒前
zrs完成签到,获得积分10
7秒前
8秒前
无花果应助pbj采纳,获得10
8秒前
long4jun3完成签到,获得积分10
8秒前
爆米花应助苹果秋灵采纳,获得10
8秒前
daisies应助迷茫的水母采纳,获得20
9秒前
9秒前
求大佬帮助完成签到,获得积分10
9秒前
10秒前
rksm完成签到 ,获得积分10
10秒前
star009完成签到,获得积分10
10秒前
lee完成签到 ,获得积分10
11秒前
11秒前
沐沐完成签到,获得积分10
11秒前
Gstar完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259