QM/MM Studies on Enzyme Catalysis and Insight into Designing of New Inhibitors by ONIOM Approach: Recent Update

洋葱 QM/毫米 机制(生物学) 生物信息学 分子力学 生化工程 化学 计算机科学 酶催化 纳米技术 分子动力学 计算化学 催化作用 材料科学 生物化学 物理 工程类 量子力学 基因
作者
Himani Sharma,Baddipadige Raju,Gera Narendra,Mohit Motiwale,Bhavna Sharma,Himanshu Verma,Om Silakari
出处
期刊:ChemistrySelect [Wiley]
卷期号:8 (1) 被引量:5
标识
DOI:10.1002/slct.202203319
摘要

Abstract Computational enzymology is a rapidly developing area that uniquely provides deep insight into the fundamental processes of biological catalysis at the atomic level. Such in‐depth insight can ultimately be employed in designing potential inhibitors against the targets of interest. Computational enzymology covers a wide range of in‐silico approaches for investigating the enzyme‐catalyzed reaction mechanisms, among which combined quantum mechanics (QM) /molecular mechanics (MM) approaches have gained a lot of attention nowadays. This advanced approach generally involves a QM method (i. e. a method that estimates the electronic structure of the active site) and a simpler MM method (a method that includes the enzyme environment) to understand the enzymatic reactions. The QM/MM method has been widely tested in understanding the molecular mechanisms both at the structural and energetic levels and observed to best correlate with experimental studies of the enzymatic mechanism. It proposes a new mechanism that ultimately opens a new route for designing new potent, efficacious enzyme inhibitors. This review mainly covers wide applications of the ONIOM (Our own N‐layer Integrated molecular Orbital Molecular mechanics) method for decoding the enzymatic catalysis mechanism or designing potential small molecule inhibitors as treatment therapeutics in terms of free energy profiles. Moreover, this article also highlights employing QM/MM method in comprehending the mechanisms for drug metabolism and resistance (owing to mutations). This write‐up may encourage medicinal chemists and molecular biologists to explore this approach to propose more promising therapeutics to improve the quality of treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助cyx采纳,获得10
刚刚
1秒前
1秒前
2秒前
姜小猪完成签到,获得积分10
2秒前
6秒前
aa发布了新的文献求助10
6秒前
尔柳发布了新的文献求助10
7秒前
8秒前
8秒前
xiaoqiu发布了新的文献求助10
9秒前
9秒前
9秒前
噢噢噢噢发布了新的文献求助10
10秒前
RUI发布了新的文献求助10
10秒前
11秒前
shanshan__完成签到,获得积分20
12秒前
Marco_hxkq发布了新的文献求助10
13秒前
科研小白发布了新的文献求助10
13秒前
15秒前
aaa发布了新的文献求助10
15秒前
Ling完成签到,获得积分10
16秒前
栗子芸完成签到,获得积分10
16秒前
万能图书馆应助沉默采纳,获得10
17秒前
深情安青应助yyy采纳,获得10
17秒前
melo完成签到,获得积分10
18秒前
18秒前
李爱国应助RUI采纳,获得10
18秒前
18秒前
19秒前
21秒前
22秒前
lebron发布了新的文献求助10
22秒前
zhou发布了新的文献求助10
24秒前
皮卡发布了新的文献求助10
24秒前
25秒前
ddaikk发布了新的文献求助10
26秒前
childdead发布了新的文献求助10
26秒前
Chen完成签到,获得积分10
30秒前
情怀应助小闵采纳,获得10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207224
求助须知:如何正确求助?哪些是违规求助? 4385281
关于积分的说明 13656194
捐赠科研通 4243805
什么是DOI,文献DOI怎么找? 2328376
邀请新用户注册赠送积分活动 1326054
关于科研通互助平台的介绍 1278288