QM/MM Studies on Enzyme Catalysis and Insight into Designing of New Inhibitors by ONIOM Approach: Recent Update

洋葱 QM/毫米 机制(生物学) 生物信息学 分子力学 生化工程 化学 计算机科学 酶催化 纳米技术 分子动力学 计算化学 催化作用 材料科学 生物化学 物理 工程类 量子力学 基因
作者
Himani Sharma,Baddipadige Raju,Gera Narendra,Mohit Motiwale,Bhavna Sharma,Himanshu Verma,Om Silakari
出处
期刊:ChemistrySelect [Wiley]
卷期号:8 (1) 被引量:5
标识
DOI:10.1002/slct.202203319
摘要

Abstract Computational enzymology is a rapidly developing area that uniquely provides deep insight into the fundamental processes of biological catalysis at the atomic level. Such in‐depth insight can ultimately be employed in designing potential inhibitors against the targets of interest. Computational enzymology covers a wide range of in‐silico approaches for investigating the enzyme‐catalyzed reaction mechanisms, among which combined quantum mechanics (QM) /molecular mechanics (MM) approaches have gained a lot of attention nowadays. This advanced approach generally involves a QM method (i. e. a method that estimates the electronic structure of the active site) and a simpler MM method (a method that includes the enzyme environment) to understand the enzymatic reactions. The QM/MM method has been widely tested in understanding the molecular mechanisms both at the structural and energetic levels and observed to best correlate with experimental studies of the enzymatic mechanism. It proposes a new mechanism that ultimately opens a new route for designing new potent, efficacious enzyme inhibitors. This review mainly covers wide applications of the ONIOM (Our own N‐layer Integrated molecular Orbital Molecular mechanics) method for decoding the enzymatic catalysis mechanism or designing potential small molecule inhibitors as treatment therapeutics in terms of free energy profiles. Moreover, this article also highlights employing QM/MM method in comprehending the mechanisms for drug metabolism and resistance (owing to mutations). This write‐up may encourage medicinal chemists and molecular biologists to explore this approach to propose more promising therapeutics to improve the quality of treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
meetland完成签到,获得积分10
1秒前
wedf123发布了新的文献求助10
2秒前
gjww完成签到,获得积分0
2秒前
小夹子完成签到 ,获得积分10
4秒前
小冉完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
酷波er应助le采纳,获得10
6秒前
驰驰发布了新的文献求助10
6秒前
hug完成签到,获得积分0
6秒前
科研通AI5应助沉静盼山采纳,获得10
7秒前
崽崽完成签到,获得积分20
7秒前
如意翡翠发布了新的文献求助10
8秒前
wguanmc发布了新的文献求助10
9秒前
9秒前
MIRROR完成签到,获得积分10
10秒前
10秒前
11秒前
爱笑夜蕾发布了新的文献求助10
12秒前
nnnnnn完成签到,获得积分10
14秒前
14秒前
小尧发布了新的文献求助50
14秒前
英俊的铭应助石绿海采纳,获得10
15秒前
充电宝应助郑qqqq采纳,获得10
15秒前
青藤之凉发布了新的文献求助30
15秒前
隐形曼青应助超帅的南霜采纳,获得30
15秒前
HongJiang发布了新的文献求助10
17秒前
le发布了新的文献求助10
17秒前
lenglin发布了新的文献求助10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
烟花应助含蓄清炎采纳,获得10
18秒前
whandzxl发布了新的文献求助10
19秒前
jkwang完成签到,获得积分10
19秒前
21秒前
小尧完成签到,获得积分10
23秒前
wuludie应助Unlung采纳,获得10
24秒前
今后应助刘仁轨采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542895
求助须知:如何正确求助?哪些是违规求助? 3120176
关于积分的说明 9341944
捐赠科研通 2818272
什么是DOI,文献DOI怎么找? 1549447
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978