QM/MM Studies on Enzyme Catalysis and Insight into Designing of New Inhibitors by ONIOM Approach: Recent Update

洋葱 QM/毫米 机制(生物学) 生物信息学 分子力学 生化工程 化学 计算机科学 酶催化 纳米技术 分子动力学 计算化学 催化作用 材料科学 生物化学 物理 工程类 量子力学 基因
作者
Himani Sharma,Baddipadige Raju,Gera Narendra,Mohit Motiwale,Bhavna Sharma,Himanshu Verma,Om Silakari
出处
期刊:ChemistrySelect [Wiley]
卷期号:8 (1) 被引量:5
标识
DOI:10.1002/slct.202203319
摘要

Abstract Computational enzymology is a rapidly developing area that uniquely provides deep insight into the fundamental processes of biological catalysis at the atomic level. Such in‐depth insight can ultimately be employed in designing potential inhibitors against the targets of interest. Computational enzymology covers a wide range of in‐silico approaches for investigating the enzyme‐catalyzed reaction mechanisms, among which combined quantum mechanics (QM) /molecular mechanics (MM) approaches have gained a lot of attention nowadays. This advanced approach generally involves a QM method (i. e. a method that estimates the electronic structure of the active site) and a simpler MM method (a method that includes the enzyme environment) to understand the enzymatic reactions. The QM/MM method has been widely tested in understanding the molecular mechanisms both at the structural and energetic levels and observed to best correlate with experimental studies of the enzymatic mechanism. It proposes a new mechanism that ultimately opens a new route for designing new potent, efficacious enzyme inhibitors. This review mainly covers wide applications of the ONIOM (Our own N‐layer Integrated molecular Orbital Molecular mechanics) method for decoding the enzymatic catalysis mechanism or designing potential small molecule inhibitors as treatment therapeutics in terms of free energy profiles. Moreover, this article also highlights employing QM/MM method in comprehending the mechanisms for drug metabolism and resistance (owing to mutations). This write‐up may encourage medicinal chemists and molecular biologists to explore this approach to propose more promising therapeutics to improve the quality of treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
budingman发布了新的文献求助30
1秒前
budingman发布了新的文献求助10
1秒前
搜集达人应助tt采纳,获得10
2秒前
budingman发布了新的文献求助10
2秒前
budingman发布了新的文献求助10
2秒前
budingman发布了新的文献求助10
3秒前
budingman发布了新的文献求助10
3秒前
3秒前
多多发布了新的文献求助10
3秒前
3秒前
荔枝一点_发布了新的文献求助20
3秒前
budingman发布了新的文献求助10
3秒前
龙龙宝宝完成签到,获得积分10
3秒前
Akim应助345采纳,获得10
4秒前
需尽欢发布了新的文献求助10
4秒前
传奇3应助布枕头采纳,获得10
5秒前
浊酒完成签到,获得积分10
5秒前
Blank发布了新的文献求助10
6秒前
6秒前
lxy完成签到,获得积分10
6秒前
6秒前
马静完成签到,获得积分10
8秒前
yang发布了新的文献求助10
8秒前
孤鲸游发布了新的文献求助10
8秒前
8秒前
阿达完成签到,获得积分10
9秒前
sun发布了新的文献求助10
9秒前
温柔发卡完成签到 ,获得积分20
9秒前
小二郎应助仁爱的秋天采纳,获得10
9秒前
半夏发布了新的文献求助10
9秒前
10秒前
幽默问凝完成签到,获得积分20
10秒前
英姑应助zzdd采纳,获得10
11秒前
完美世界应助kbkyvuy采纳,获得10
11秒前
junjun2011完成签到,获得积分10
11秒前
沉住气发布了新的文献求助10
13秒前
13秒前
13秒前
太阳完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485