Enhancement of hydrogen clean energy production from greenhouse gas by in-situ hydrogen separation with a cobalt-silica membrane

蒸汽重整 甲烷 制氢 膜反应器 材料科学 氢气净化器 化学 无机化学 化学工程 工程类 有机化学 生物化学
作者
Guozhao Ji,Yin Xian,Weng Fu,Xiaonan Kou,Dachamir Hotza,Yinxiang Wang,Aimin Li,Gianni Olguin,Wei Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:388: 135874-135874 被引量:10
标识
DOI:10.1016/j.jclepro.2023.135874
摘要

Methane steam reforming is a representative reaction to convert carbon-rich fuel to carbon-free fuel. However, the thermodynamic equilibrium limits the conversion from methane to hydrogen. Separating hydrogen in-situ from hydrocarbon reforming reactions by inorganic membranes is an effective way to overcome the thermodynamic equilibrium, which improves the conversion of the reforming reactions and the efficiency of hydrogen production. Silica-based membrane, due to its size sieving effect, could separate hydrogen molecules from other larger gases at high temperatures, but the poor hydrothermal stability of silica in steam conditions remains a challenge for the application in hydrogen production. In this study, to improve the hydrothermal stability cobalt was doped in silica membrane precursors with varying ratios. After a series of characterizations by dynamic light scattering, Fourier Transform Infrared spectroscopy, X-ray diffraction, nitrogen adsorption and Scanning Electron Microscope, a cobalt-silica membrane with a cobalt/silicon ratio of 1/4 was fabricated by dip-coating technique. At 500 °C the membrane delivered helium permeance of 9.37 × 10−8 mol m−2 s−1 Pa−1, helium/nitrogen perm-selectivity of 258.48, and helium/carbon dioxide perm-selectivity of 242.19. The membrane was then employed in methane steam reforming for in-situ hydrogen separation to enhance methane conversion and hydrogen production. Raising the reaction temperature favors the performance of the membrane reactor, but temperature over 550 °C was still challenging due to hydrothermal stability issue. Increasing reaction pressure from 0 to 0.3 MPa favored methane conversion, but pressure over 0.4 MPa led to concentration polarization. Steam to carbon (S/C) ratio of 3 was suitable to avoid nickel/alumina catalyst coking and methane dilution. Reducing the gas hourly space velocity (GHSV) ensured sufficient residence time for methane and favored methane conversion. At T = 500 °C, Δp = 0.3 MPa, S/C = 3 and GHSV = 30 ml g−1 h−1, the membrane elevated the methane conversion from 45.36% (without membrane) to 83.71%. With a cobalt-silica membrane 4.32 ml min−1 of hydrogen was continuously produced with a purity of 82.12 vol% compared to 2.34 ml min−1 of hydrogen with a purity of 65.0 vol% in the case without a membrane. As expected, the micro-morphology of the cobalt-doped membrane after the 20-day steam reforming test showed little visible change in scanning electron microscope. The reduction of pore volume was only 15% as compared to 25% for pure silica material. This membrane demonstrated promising potential in the efficient production of hydrogen.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
海豚发布了新的文献求助10
4秒前
健忘洋葱完成签到 ,获得积分10
4秒前
大怪物发布了新的文献求助10
5秒前
maybe发布了新的文献求助10
5秒前
6秒前
6秒前
FashionBoy应助陆访文采纳,获得10
6秒前
bkagyin应助与枫采纳,获得10
7秒前
7秒前
丘比特应助听雨眠采纳,获得10
8秒前
9秒前
一二发布了新的文献求助20
9秒前
10秒前
科目三应助轻松雁蓉采纳,获得10
11秒前
SCI完成签到,获得积分10
11秒前
星辰大海应助yangyan采纳,获得10
11秒前
景凤灵完成签到,获得积分10
11秒前
fyy发布了新的文献求助10
12秒前
zhang发布了新的文献求助10
12秒前
花源应助飞天小女警采纳,获得10
12秒前
12秒前
光亮笑柳发布了新的文献求助10
13秒前
蒋美桥发布了新的文献求助10
13秒前
Lp发布了新的文献求助10
13秒前
13秒前
14秒前
17秒前
怕黑白亦发布了新的文献求助30
18秒前
18秒前
恒星的恒心完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039