Enhancement of hydrogen clean energy production from greenhouse gas by in-situ hydrogen separation with a cobalt-silica membrane

蒸汽重整 甲烷 制氢 膜反应器 材料科学 氢气净化器 化学 无机化学 化学工程 工程类 有机化学 生物化学
作者
Guozhao Ji,Yin Xian,Weng Fu,Xiaonan Kou,Dachamir Hotza,Yinxiang Wang,Aimin Li,Gianni Olguin,Wei Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:388: 135874-135874 被引量:10
标识
DOI:10.1016/j.jclepro.2023.135874
摘要

Methane steam reforming is a representative reaction to convert carbon-rich fuel to carbon-free fuel. However, the thermodynamic equilibrium limits the conversion from methane to hydrogen. Separating hydrogen in-situ from hydrocarbon reforming reactions by inorganic membranes is an effective way to overcome the thermodynamic equilibrium, which improves the conversion of the reforming reactions and the efficiency of hydrogen production. Silica-based membrane, due to its size sieving effect, could separate hydrogen molecules from other larger gases at high temperatures, but the poor hydrothermal stability of silica in steam conditions remains a challenge for the application in hydrogen production. In this study, to improve the hydrothermal stability cobalt was doped in silica membrane precursors with varying ratios. After a series of characterizations by dynamic light scattering, Fourier Transform Infrared spectroscopy, X-ray diffraction, nitrogen adsorption and Scanning Electron Microscope, a cobalt-silica membrane with a cobalt/silicon ratio of 1/4 was fabricated by dip-coating technique. At 500 °C the membrane delivered helium permeance of 9.37 × 10−8 mol m−2 s−1 Pa−1, helium/nitrogen perm-selectivity of 258.48, and helium/carbon dioxide perm-selectivity of 242.19. The membrane was then employed in methane steam reforming for in-situ hydrogen separation to enhance methane conversion and hydrogen production. Raising the reaction temperature favors the performance of the membrane reactor, but temperature over 550 °C was still challenging due to hydrothermal stability issue. Increasing reaction pressure from 0 to 0.3 MPa favored methane conversion, but pressure over 0.4 MPa led to concentration polarization. Steam to carbon (S/C) ratio of 3 was suitable to avoid nickel/alumina catalyst coking and methane dilution. Reducing the gas hourly space velocity (GHSV) ensured sufficient residence time for methane and favored methane conversion. At T = 500 °C, Δp = 0.3 MPa, S/C = 3 and GHSV = 30 ml g−1 h−1, the membrane elevated the methane conversion from 45.36% (without membrane) to 83.71%. With a cobalt-silica membrane 4.32 ml min−1 of hydrogen was continuously produced with a purity of 82.12 vol% compared to 2.34 ml min−1 of hydrogen with a purity of 65.0 vol% in the case without a membrane. As expected, the micro-morphology of the cobalt-doped membrane after the 20-day steam reforming test showed little visible change in scanning electron microscope. The reduction of pore volume was only 15% as compared to 25% for pure silica material. This membrane demonstrated promising potential in the efficient production of hydrogen.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助俊逸幻柏采纳,获得10
刚刚
脑洞疼应助蚊香液采纳,获得10
刚刚
1秒前
1秒前
2秒前
3秒前
无情碧灵发布了新的文献求助10
3秒前
背后青筠发布了新的文献求助10
3秒前
Eourique完成签到,获得积分20
3秒前
lwz关闭了lwz文献求助
4秒前
4秒前
温暖宛筠发布了新的文献求助10
5秒前
murron完成签到,获得积分10
5秒前
虞丹萱发布了新的文献求助10
5秒前
ym发布了新的文献求助10
5秒前
SHI关闭了SHI文献求助
5秒前
Barnett发布了新的文献求助10
5秒前
椰茶发布了新的文献求助50
6秒前
科研小白发布了新的文献求助10
6秒前
Nature应助祁尒采纳,获得10
6秒前
蔡丽露完成签到,获得积分10
6秒前
7秒前
ttt发布了新的文献求助10
8秒前
加油少年发布了新的文献求助10
8秒前
ctttt发布了新的文献求助10
8秒前
9秒前
Lucas应助鱿鱼采纳,获得10
9秒前
miemiemie94完成签到,获得积分20
10秒前
v啦啦啦啦发布了新的文献求助10
10秒前
10秒前
吴畅发布了新的文献求助10
11秒前
冷静完成签到,获得积分10
11秒前
11秒前
归宁完成签到,获得积分10
11秒前
谢大喵发布了新的文献求助10
11秒前
田様应助Kittymiaoo采纳,获得10
11秒前
雪白冷荷发布了新的文献求助10
11秒前
LXhhh完成签到,获得积分10
11秒前
复杂的孤容完成签到,获得积分10
11秒前
吴欣彤完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482