Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR

大型水蚤 数量结构-活动关系 生态毒性 水生毒理学 适用范围 环境化学 毒性 化学 立体化学 有机化学
作者
Feifan Li,Guohui Sun,Tengjiao Fan,Na Zhang,Lijiao Zhao,Rugang Zhong,Yongzhen Peng
出处
期刊:Aquatic Toxicology [Elsevier]
卷期号:255: 106393-106393 被引量:36
标识
DOI:10.1016/j.aquatox.2022.106393
摘要

Fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) are a type of organic compounds widely occurring in the environment that pose a potential hazard to ecosystem and public health, and thus receive extensive attention from various regulatory agencies. Here, quantitative structure-activity relationship (QSAR) models were constructed to model the ecotoxicity of FNFPAHs against two aquatic species, Daphnia magna and Oncorhynchus mykiss. According to the stringent OECD guidelines, we used genetic algorithm (GA) plus multiple linear regression (MLR) approach to establish QSAR models of the two aquatic toxicity endpoints: D. magna (48 h LC50) and O. mykiss (96 h LC50). The models were established using simple 2D descriptors with explicit physicochemical significance and evaluated using various internal/external validation metrics. The results clearly show that both models are statistically robust (QLOO2 = 0.7834 for D. magna and QLOO2 = 0.8162 for O. mykiss), have good internal fitness (R2 = 0.8159 for D. magna and R2 = 0.8626 for O. mykiss and external predictive ability (D. magna: Rtest2 = 0.8259, QFn2 = 0.7640∼0.8140, CCCtest = 0.8972; O. mykiss:Rtest2 = 0.8077, QFn2 = 0.7615∼0.7722, CCCtest = 0.8910). To prove the predictive performance of the developed models, an additional comparison with the standard ECOSAR tool obviously shows that our models have lower RMSE values. Subsequently, we utilized the best models to predict the true external set compounds collected from the PPDB database to further fill the toxicity data gap. In addition, consensus models (CMs) that integrate all validated individual models (IMs) were more externally predictive than IMs, of which CM2 has the best prediction performance towards the two aquatic species. Overall, the models presented here could be used to evaluate unknown FNFPAHs inside the domain of applicability (AD), thus being very important for environmental risk assessment under current regulatory frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大厉完成签到,获得积分10
刚刚
大西瓜发布了新的文献求助10
1秒前
勤能补拙发布了新的文献求助10
2秒前
Cathy驳回了Akim应助
2秒前
文艺觅波发布了新的文献求助30
3秒前
王明发布了新的文献求助10
5秒前
小夏发布了新的文献求助10
6秒前
6秒前
犹豫酸奶发布了新的文献求助10
7秒前
knight发布了新的文献求助10
9秒前
拉萨小医生完成签到,获得积分10
10秒前
10秒前
忧郁凡灵发布了新的文献求助10
10秒前
赘婿应助邹儿采纳,获得10
11秒前
超帅花瓣完成签到,获得积分10
12秒前
14秒前
15秒前
CodeCraft应助福禄小金刚采纳,获得10
15秒前
科研通AI2S应助kk采纳,获得10
16秒前
情怀应助小夏采纳,获得10
16秒前
我ppp发布了新的文献求助10
16秒前
852应助knight采纳,获得10
16秒前
顾矜应助微风采纳,获得10
17秒前
爱学习的小王完成签到,获得积分10
17秒前
猪皮恶人发布了新的文献求助10
18秒前
19秒前
Owen应助我ppp采纳,获得10
20秒前
老温完成签到,获得积分10
21秒前
21秒前
星辰大海应助忧郁凡灵采纳,获得10
22秒前
猪皮恶人完成签到,获得积分10
23秒前
123456qi发布了新的文献求助10
23秒前
ant完成签到,获得积分10
24秒前
25秒前
Jasper应助hakunamatata采纳,获得10
25秒前
26秒前
zho驳回了小蘑菇应助
26秒前
邹儿发布了新的文献求助10
28秒前
白橘发布了新的文献求助10
28秒前
茶多酚完成签到,获得积分10
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267870
求助须知:如何正确求助?哪些是违规求助? 2907272
关于积分的说明 8341428
捐赠科研通 2577932
什么是DOI,文献DOI怎么找? 1401356
科研通“疑难数据库(出版商)”最低求助积分说明 655029
邀请新用户注册赠送积分活动 634046