Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR

大型水蚤 数量结构-活动关系 生态毒性 水生毒理学 适用范围 环境化学 毒性 化学 立体化学 有机化学
作者
Feifan Li,Guohui Sun,Tengjiao Fan,Na Zhang,Lijiao Zhao,Rugang Zhong,Yongzhen Peng
出处
期刊:Aquatic Toxicology [Elsevier BV]
卷期号:255: 106393-106393 被引量:36
标识
DOI:10.1016/j.aquatox.2022.106393
摘要

Fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) are a type of organic compounds widely occurring in the environment that pose a potential hazard to ecosystem and public health, and thus receive extensive attention from various regulatory agencies. Here, quantitative structure-activity relationship (QSAR) models were constructed to model the ecotoxicity of FNFPAHs against two aquatic species, Daphnia magna and Oncorhynchus mykiss. According to the stringent OECD guidelines, we used genetic algorithm (GA) plus multiple linear regression (MLR) approach to establish QSAR models of the two aquatic toxicity endpoints: D. magna (48 h LC50) and O. mykiss (96 h LC50). The models were established using simple 2D descriptors with explicit physicochemical significance and evaluated using various internal/external validation metrics. The results clearly show that both models are statistically robust (QLOO2 = 0.7834 for D. magna and QLOO2 = 0.8162 for O. mykiss), have good internal fitness (R2 = 0.8159 for D. magna and R2 = 0.8626 for O. mykiss and external predictive ability (D. magna: Rtest2 = 0.8259, QFn2 = 0.7640∼0.8140, CCCtest = 0.8972; O. mykiss:Rtest2 = 0.8077, QFn2 = 0.7615∼0.7722, CCCtest = 0.8910). To prove the predictive performance of the developed models, an additional comparison with the standard ECOSAR tool obviously shows that our models have lower RMSE values. Subsequently, we utilized the best models to predict the true external set compounds collected from the PPDB database to further fill the toxicity data gap. In addition, consensus models (CMs) that integrate all validated individual models (IMs) were more externally predictive than IMs, of which CM2 has the best prediction performance towards the two aquatic species. Overall, the models presented here could be used to evaluate unknown FNFPAHs inside the domain of applicability (AD), thus being very important for environmental risk assessment under current regulatory frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bgt完成签到 ,获得积分10
1秒前
1秒前
精灵半岛完成签到,获得积分10
2秒前
风雨琳琅完成签到,获得积分10
2秒前
顺利毕业耶耶耶完成签到,获得积分10
2秒前
今后应助javalin采纳,获得10
2秒前
2秒前
4秒前
led完成签到,获得积分10
4秒前
4秒前
鱼生发布了新的文献求助10
5秒前
王军鹏发布了新的文献求助80
5秒前
科演小能手完成签到,获得积分10
6秒前
Lucas应助健壮丝袜采纳,获得10
6秒前
wfy发布了新的文献求助10
6秒前
一罐樱桃酱完成签到,获得积分10
6秒前
圈圈完成签到,获得积分10
7秒前
上官若男应助zz采纳,获得10
7秒前
丘比特应助独特流沙采纳,获得10
7秒前
花花发布了新的文献求助10
8秒前
guanzhuang完成签到,获得积分10
9秒前
郭慧梅发布了新的文献求助10
9秒前
9秒前
10秒前
筱簋完成签到,获得积分10
10秒前
Jasper应助SDNUDRUG采纳,获得10
13秒前
周三完成签到,获得积分10
13秒前
mojio发布了新的文献求助10
13秒前
虎帅发布了新的文献求助10
14秒前
望北楼主发布了新的文献求助10
15秒前
默默的微笑完成签到,获得积分10
16秒前
17秒前
chourllh发布了新的文献求助10
17秒前
穆清完成签到,获得积分10
18秒前
18秒前
五月初夏完成签到,获得积分10
19秒前
王军鹏完成签到,获得积分10
20秒前
虎帅完成签到,获得积分10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091