Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography

迭代重建 反问题 计算机科学 人工智能 深度学习 切伦科夫辐射 重建算法 稳健性(进化) 基本事实 断层重建 算法 断层摄影术 光学 计算机视觉 物理 数学 探测器 基因 数学分析 生物化学 化学
作者
Wenqian Zhang,Ting Hu,Zhe Li,Zhonghua Sun,Kebin Jia,Haoran Dou,Jinchao Feng,Brian W. Pogue
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (2): 783-783 被引量:1
标识
DOI:10.1364/boe.480429
摘要

As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
牛哥完成签到 ,获得积分10
2秒前
5秒前
中杯西瓜冰完成签到,获得积分10
6秒前
斯文败类应助moian2采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
仪式感完成签到,获得积分20
7秒前
情怀应助vidi采纳,获得10
8秒前
9秒前
852应助杨仔采纳,获得10
9秒前
10秒前
凉宫八月发布了新的文献求助10
10秒前
12秒前
YINGYAN应助wu采纳,获得20
13秒前
13秒前
戚小发布了新的文献求助10
14秒前
王丽娟应助李静静采纳,获得10
15秒前
16秒前
SJJ应助啵啵冰采纳,获得30
16秒前
优秀芷波完成签到 ,获得积分10
18秒前
老迟到的梦旋完成签到 ,获得积分10
19秒前
moian2发布了新的文献求助10
20秒前
情怀应助虎啊虎啊采纳,获得10
20秒前
20秒前
21秒前
彭于晏应助fufu采纳,获得10
22秒前
时不言完成签到 ,获得积分10
22秒前
orixero应助holly采纳,获得10
23秒前
夏夜完成签到 ,获得积分10
25秒前
apple红了完成签到 ,获得积分10
26秒前
泥豪泥嚎完成签到 ,获得积分10
26秒前
27秒前
Sylvia发布了新的文献求助10
27秒前
Vanessa完成签到 ,获得积分10
28秒前
drfang完成签到 ,获得积分10
28秒前
一只小锦鲤完成签到 ,获得积分10
28秒前
28秒前
隔壁海绵宝宝完成签到,获得积分10
31秒前
33秒前
yunyueqixun完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744116
关于积分的说明 15000277
捐赠科研通 4796029
什么是DOI,文献DOI怎么找? 2562260
邀请新用户注册赠送积分活动 1521810
关于科研通互助平台的介绍 1481704