Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography

迭代重建 反问题 计算机科学 人工智能 深度学习 切伦科夫辐射 重建算法 稳健性(进化) 基本事实 断层重建 算法 断层摄影术 光学 计算机视觉 物理 数学 探测器 基因 数学分析 生物化学 化学
作者
Wenqian Zhang,Ting Hu,Zhe Li,Zhonghua Sun,Kebin Jia,Haoran Dou,Jinchao Feng,Brian W. Pogue
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (2): 783-783 被引量:1
标识
DOI:10.1364/boe.480429
摘要

As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵谷芹完成签到,获得积分10
刚刚
科研通AI6应助小羊羔采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
zzz发布了新的文献求助10
1秒前
1秒前
2秒前
maomao201026发布了新的文献求助10
2秒前
yan123完成签到,获得积分10
2秒前
共享精神应助chai采纳,获得10
2秒前
Apricity应助wuxunxun2015采纳,获得10
2秒前
2秒前
tina完成签到,获得积分10
3秒前
科研顺利发布了新的文献求助10
4秒前
yang123发布了新的文献求助10
4秒前
5秒前
zzz发布了新的文献求助10
5秒前
熊猫发布了新的文献求助10
5秒前
5秒前
www发布了新的文献求助10
6秒前
6秒前
琳67发布了新的文献求助10
6秒前
cult发布了新的文献求助10
6秒前
明理飞风完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
FashionBoy应助肖紫若采纳,获得10
8秒前
lelele发布了新的文献求助10
8秒前
AnasYusuf发布了新的文献求助30
8秒前
kk发布了新的文献求助10
8秒前
科目三应助陈艺鹏采纳,获得10
8秒前
8秒前
科研通AI6应助神奇小药丸采纳,获得10
8秒前
9秒前
活力砖家完成签到,获得积分10
9秒前
9秒前
jiysh发布了新的文献求助10
10秒前
guojingjing发布了新的文献求助10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592