Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography

迭代重建 反问题 计算机科学 人工智能 深度学习 切伦科夫辐射 重建算法 稳健性(进化) 基本事实 断层重建 算法 断层摄影术 光学 计算机视觉 物理 数学 探测器 基因 数学分析 生物化学 化学
作者
Wenqian Zhang,Ting Hu,Zhe Li,Zhonghua Sun,Kebin Jia,Haoran Dou,Jinchao Feng,Brian W. Pogue
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (2): 783-783 被引量:1
标识
DOI:10.1364/boe.480429
摘要

As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明人达发布了新的文献求助10
1秒前
eraygt完成签到,获得积分10
1秒前
蓝白胖次哇完成签到,获得积分20
2秒前
QQ完成签到,获得积分10
2秒前
ccqqww完成签到,获得积分10
2秒前
3秒前
bzlish发布了新的文献求助10
3秒前
3秒前
hui完成签到,获得积分10
3秒前
4秒前
老马发布了新的文献求助30
4秒前
快乐花卷完成签到,获得积分10
5秒前
5秒前
Allen发布了新的文献求助10
5秒前
adu完成签到,获得积分10
5秒前
ccqqww发布了新的文献求助10
5秒前
科研通AI6应助精明人达采纳,获得10
5秒前
崔雪峰发布了新的文献求助10
6秒前
6秒前
乐乐应助传统的如霜采纳,获得10
6秒前
乐乐应助bzlish采纳,获得10
8秒前
8秒前
pth完成签到,获得积分10
8秒前
爆米花应助Chen采纳,获得10
9秒前
诚心雪晴发布了新的文献求助10
9秒前
张馨月发布了新的文献求助10
9秒前
Awake发布了新的文献求助10
10秒前
面壁思过发布了新的文献求助10
10秒前
MM完成签到,获得积分10
10秒前
SciGPT应助jassica9采纳,获得10
11秒前
12秒前
张晓林完成签到,获得积分20
13秒前
科研通AI6应助Olivia采纳,获得10
14秒前
在水一方应助v小飞侠101采纳,获得10
14秒前
16秒前
屎上雕花选手完成签到,获得积分10
17秒前
wryyyy完成签到,获得积分10
17秒前
虚幻代芙完成签到,获得积分20
18秒前
19秒前
zdz发布了新的文献求助60
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642582
求助须知:如何正确求助?哪些是违规求助? 4759250
关于积分的说明 15018176
捐赠科研通 4801148
什么是DOI,文献DOI怎么找? 2566437
邀请新用户注册赠送积分活动 1524505
关于科研通互助平台的介绍 1484039