Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography

迭代重建 反问题 计算机科学 人工智能 深度学习 切伦科夫辐射 重建算法 稳健性(进化) 基本事实 断层重建 算法 断层摄影术 光学 计算机视觉 物理 数学 探测器 基因 数学分析 生物化学 化学
作者
Wenqian Zhang,Ting Hu,Zhe Li,Zhonghua Sun,Kebin Jia,Haoran Dou,Jinchao Feng,Brian W. Pogue
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (2): 783-783 被引量:1
标识
DOI:10.1364/boe.480429
摘要

As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jn完成签到,获得积分10
刚刚
大个应助qaqfdmmj采纳,获得10
刚刚
秋露初白完成签到,获得积分10
1秒前
2秒前
淼淼发布了新的文献求助10
2秒前
所所应助Nayuta48采纳,获得30
2秒前
可爱的函函应助顺顺采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
YY完成签到 ,获得积分10
3秒前
深情安青应助曾经的碧萱采纳,获得10
3秒前
4秒前
4秒前
4秒前
今后应助阿巴采纳,获得10
5秒前
jn发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
瓶子完成签到 ,获得积分10
5秒前
LYX发布了新的文献求助10
6秒前
如意的乐天应助曾经以亦采纳,获得10
6秒前
简单的钢铁侠完成签到,获得积分10
6秒前
完美世界应助xiuuu采纳,获得10
7秒前
xxxllllll发布了新的文献求助10
7秒前
归尘发布了新的文献求助10
8秒前
Cdws发布了新的文献求助10
8秒前
沉舟发布了新的文献求助10
8秒前
rong完成签到,获得积分10
8秒前
9秒前
王美美发布了新的文献求助10
9秒前
任任任完成签到,获得积分10
10秒前
10秒前
11秒前
本尼脸上褶子完成签到 ,获得积分10
11秒前
自由元菱发布了新的文献求助10
12秒前
青青发布了新的文献求助10
12秒前
13秒前
谢梓良发布了新的文献求助10
14秒前
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736