Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography

迭代重建 反问题 计算机科学 人工智能 深度学习 切伦科夫辐射 重建算法 稳健性(进化) 基本事实 断层重建 算法 断层摄影术 光学 计算机视觉 物理 数学 探测器 基因 数学分析 生物化学 化学
作者
Wenqian Zhang,Ting Hu,Zhe Li,Zhonghua Sun,Kebin Jia,Haoran Dou,Jinchao Feng,Brian W. Pogue
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (2): 783-783 被引量:1
标识
DOI:10.1364/boe.480429
摘要

As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qianci2009完成签到,获得积分0
2秒前
我很好完成签到 ,获得积分10
5秒前
####完成签到 ,获得积分10
9秒前
Akashi完成签到,获得积分10
11秒前
12秒前
MchemG应助殷楷霖采纳,获得10
12秒前
ttyhtg完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
15秒前
Suttier完成签到 ,获得积分10
17秒前
mmd完成签到 ,获得积分10
18秒前
苏信怜完成签到,获得积分10
21秒前
可爱可愁完成签到,获得积分10
26秒前
小鱼完成签到 ,获得积分10
28秒前
yanyan完成签到 ,获得积分10
32秒前
情怀应助du采纳,获得10
32秒前
luluzhu完成签到,获得积分10
36秒前
gyx完成签到 ,获得积分10
37秒前
rigelfalcon完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
41秒前
一杯沧海完成签到 ,获得积分10
41秒前
lily完成签到 ,获得积分10
41秒前
cocofan完成签到 ,获得积分10
43秒前
从容的水壶完成签到 ,获得积分10
47秒前
虚心青梦完成签到 ,获得积分10
49秒前
50秒前
环游世界完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
53秒前
Karl完成签到,获得积分10
57秒前
1分钟前
du发布了新的文献求助10
1分钟前
曾经小伙完成签到 ,获得积分10
1分钟前
Win完成签到 ,获得积分10
1分钟前
Neko完成签到,获得积分10
1分钟前
666666完成签到,获得积分10
1分钟前
2025顺顺利利完成签到 ,获得积分10
1分钟前
王蕊完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
乐乐呀完成签到 ,获得积分10
1分钟前
1分钟前
幽默的迎天完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645043
求助须知:如何正确求助?哪些是违规求助? 4767578
关于积分的说明 15026217
捐赠科研通 4803454
什么是DOI,文献DOI怎么找? 2568317
邀请新用户注册赠送积分活动 1525684
关于科研通互助平台的介绍 1485247