Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography

迭代重建 反问题 计算机科学 人工智能 深度学习 切伦科夫辐射 重建算法 稳健性(进化) 基本事实 断层重建 算法 断层摄影术 光学 计算机视觉 物理 数学 探测器 数学分析 生物化学 基因 化学
作者
Wenqian Zhang,Ting Hu,Zhe Li,Zhonghua Sun,Kebin Jia,Haoran Dou,Jinchao Feng,Brian W. Pogue
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (2): 783-783 被引量:1
标识
DOI:10.1364/boe.480429
摘要

As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助nuannuan采纳,获得20
1秒前
呆萌冰绿完成签到,获得积分10
1秒前
李大园子完成签到 ,获得积分10
1秒前
1秒前
华枝春满完成签到,获得积分10
2秒前
wuqilong完成签到,获得积分10
3秒前
dreamlightzy应助qmd采纳,获得10
3秒前
NewMoon完成签到,获得积分10
3秒前
FashionBoy应助嘟嘟采纳,获得10
3秒前
洁净的127完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
2339822272发布了新的文献求助10
6秒前
星星完成签到,获得积分10
6秒前
幸运兔发布了新的文献求助10
7秒前
上官若男应助wqx采纳,获得10
7秒前
月亮邮递员完成签到,获得积分10
9秒前
222完成签到 ,获得积分10
9秒前
Likj完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
异氰酸正丙酯完成签到 ,获得积分10
11秒前
wsc发布了新的文献求助10
11秒前
幸运兔完成签到,获得积分10
12秒前
曾祥钰完成签到 ,获得积分10
13秒前
14秒前
14秒前
bkagyin应助XM采纳,获得10
14秒前
14秒前
芒果糯米球完成签到,获得积分10
16秒前
未来完成签到,获得积分10
18秒前
18秒前
nuonuo发布了新的文献求助10
18秒前
18秒前
橙子发布了新的文献求助30
18秒前
海洋发布了新的文献求助10
19秒前
万能图书馆应助黄123huang_采纳,获得10
19秒前
丘比特应助tengfei采纳,获得10
20秒前
Cody发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333