Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography

迭代重建 反问题 计算机科学 人工智能 深度学习 切伦科夫辐射 重建算法 稳健性(进化) 基本事实 断层重建 算法 断层摄影术 光学 计算机视觉 物理 数学 探测器 数学分析 生物化学 基因 化学
作者
Wenqian Zhang,Ting Hu,Zhe Li,Zhonghua Sun,Kebin Jia,Haoran Dou,Jinchao Feng,Brian W. Pogue
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:14 (2): 783-783 被引量:1
标识
DOI:10.1364/boe.480429
摘要

As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊二浪发布了新的文献求助10
刚刚
刚刚
1秒前
Mazhuang应助木木采纳,获得10
2秒前
wzZ完成签到,获得积分10
3秒前
3秒前
黄子宸完成签到,获得积分10
4秒前
MOMO发布了新的文献求助10
6秒前
wzZ发布了新的文献求助10
7秒前
diedeline发布了新的文献求助10
9秒前
10秒前
12秒前
12秒前
俊杰完成签到,获得积分20
12秒前
13秒前
hana完成签到,获得积分20
13秒前
王开晙发布了新的文献求助10
14秒前
16秒前
善莫大焉发布了新的文献求助10
18秒前
hana发布了新的文献求助10
18秒前
852应助123wsq采纳,获得10
19秒前
orixero应助俊杰采纳,获得10
21秒前
oo发布了新的文献求助10
21秒前
12591发布了新的文献求助10
25秒前
25秒前
迷人书蝶完成签到,获得积分10
26秒前
小宋同学不能怂完成签到 ,获得积分10
27秒前
爱撒娇的手套完成签到,获得积分20
27秒前
29秒前
29秒前
缓慢的涵瑶应助LLLxy采纳,获得20
30秒前
酷波er应助Eternitymaria采纳,获得10
30秒前
哈哈哈哈哈完成签到,获得积分10
31秒前
32秒前
田様应助yukinade采纳,获得10
32秒前
dengdeng发布了新的文献求助10
32秒前
王开晙完成签到,获得积分10
32秒前
35秒前
阳光下的沙滩城堡完成签到,获得积分10
36秒前
李健应助王开晙采纳,获得10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499