Selfrec-Net: self-supervised deep learning approach for the reconstruction of Cherenkov-excited luminescence scanned tomography

迭代重建 反问题 计算机科学 人工智能 深度学习 切伦科夫辐射 重建算法 稳健性(进化) 基本事实 断层重建 算法 断层摄影术 光学 计算机视觉 物理 数学 探测器 数学分析 生物化学 基因 化学
作者
Wenqian Zhang,Ting Hu,Zhe Li,Zhonghua Sun,Kebin Jia,Haoran Dou,Jinchao Feng,Brian W. Pogue
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (2): 783-783 被引量:1
标识
DOI:10.1364/boe.480429
摘要

As an emerging imaging technique, Cherenkov-excited luminescence scanned tomography (CELST) can recover a high-resolution 3D distribution of quantum emission fields within tissue using X-ray excitation for deep penetrance. However, its reconstruction is an ill-posed and under-conditioned inverse problem because of the diffuse optical emission signal. Deep learning based image reconstruction has shown very good potential for solving these types of problems, however they suffer from a lack of ground-truth image data to confirm when used with experimental data. To overcome this, a self-supervised network cascaded by a 3D reconstruction network and the forward model, termed Selfrec-Net, was proposed to perform CELST reconstruction. Under this framework, the boundary measurements are input to the network to reconstruct the distribution of the quantum field and the predicted measurements are subsequently obtained by feeding the reconstructed result to the forward model. The network was trained by minimizing the loss between the input measurements and the predicted measurements rather than the reconstructed distributions and the corresponding ground truths. Comparative experiments were carried out on both numerical simulations and physical phantoms. For singular luminescent targets, the results demonstrate the effectiveness and robustness of the proposed network, and comparable performance can be attained to a state-of-the-art deep supervised learning algorithm, where the accuracy of the emission yield and localization of the objects was far superior to iterative reconstruction methods. Reconstruction of multiple objects is still reasonable with high localization accuracy, although with limits to the emission yield accuracy as the distribution becomes more complex. Overall though the reconstruction of Selfrec-Net provides a self-supervised way to recover the location and emission yield of molecular distributions in murine model tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Veronica完成签到,获得积分10
1秒前
999完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
Akim应助moralz采纳,获得30
4秒前
大个应助KYT采纳,获得10
4秒前
丘比特应助xiangbobo0129采纳,获得10
6秒前
7秒前
杨羊羊发布了新的文献求助30
8秒前
桐桐应助May采纳,获得10
9秒前
lemon发布了新的文献求助10
9秒前
小鱼爱吃肉应助Kvolu29采纳,获得10
12秒前
鹏826发布了新的文献求助10
12秒前
AAA应助dinghaifeng采纳,获得10
12秒前
蒜蒜完成签到 ,获得积分0
14秒前
Genger完成签到,获得积分10
16秒前
17秒前
方赫然应助lemon采纳,获得10
17秒前
英俊的铭应助shjyang采纳,获得10
18秒前
万能图书馆应助健忘大炮采纳,获得10
18秒前
19秒前
hzw完成签到,获得积分10
19秒前
20秒前
小马甲应助ybb采纳,获得10
20秒前
20秒前
21秒前
杨羊羊完成签到,获得积分10
21秒前
pauchiu完成签到,获得积分0
23秒前
jy发布了新的文献求助10
23秒前
SKZFZQS完成签到,获得积分10
25秒前
心想事陈同学完成签到,获得积分10
25秒前
Metastasis发布了新的文献求助10
25秒前
zhzh0618完成签到,获得积分10
25秒前
26秒前
宋志远发布了新的文献求助10
26秒前
phil发布了新的文献求助10
26秒前
囗囗囗给囗囗囗的求助进行了留言
26秒前
dinghaifeng完成签到,获得积分10
27秒前
酱豆豆完成签到,获得积分10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245829
求助须知:如何正确求助?哪些是违规求助? 2889464
关于积分的说明 8258504
捐赠科研通 2557814
什么是DOI,文献DOI怎么找? 1386661
科研通“疑难数据库(出版商)”最低求助积分说明 650327
邀请新用户注册赠送积分活动 626685