亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores

小桶 基因本体论 计算生物学 弦(物理) 基因 特征(语言学) 节点(物理) 理论(学习稳定性) 计算机科学 生物 机器学习 遗传学 基因表达 数学 工程类 结构工程 哲学 语言学 数学物理
作者
FeiMing Huang,Minfei Fu,JiaRui Li,Lei Chen,Feng Kong,Tao Huang,Yi Cai
出处
期刊:Biochimica Et Biophysica Acta - Proteins And Proteomics [Elsevier]
卷期号:1871 (3): 140889-140889 被引量:28
标识
DOI:10.1016/j.bbapap.2023.140889
摘要

Metabolic stability of proteins plays a vital role in various dedicated cellular processes. Traditional methods of measuring the metabolic stability are time-consuming and expensive. Therefore, we developed a more efficient computational approach to understand the protein dynamic action mechanisms in biological process networks. In this study, we collected 341 short-lived proteins and 824 non-short-lived proteins from U2OS; 342 short-lived proteins and 821 non-short-lived proteins from HEK293T; 424 short-lived proteins and 1153 non-short-lived proteins from HCT116; and 384 short-lived proteins and 992 non-short-lived proteins from RPE1. The proteins were encoded by GO and KEGG enrichment scores based on the genes and their neighbors in STRING, resulting in 20,681 GO term features and 297 KEGG pathway features. We also incorporated the protein interaction information from STRING into the features and obtained 19,247 node features. Boruta and mRMR methods were used for feature filtering, and IFS method was used to obtain the best feature subsets and create the models with the highest performance. The present study identified 42 features that did not appear in previous studies and classified them into eight groups according to their functional annotation. By reviewing the literature, we found that the following three functional groups were critical in determining the stability of proteins: synaptic transmission, post-translational modifications, and cell fate determination. These findings may serve as a valuable reference for developing drugs that target protein stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庚朝年完成签到 ,获得积分10
2秒前
cacaldon完成签到,获得积分10
7秒前
丘比特应助三太子采纳,获得10
9秒前
12秒前
狗干发布了新的文献求助10
17秒前
我是老大应助专注的月亮采纳,获得10
19秒前
香蕉觅云应助野生菜狗采纳,获得10
20秒前
21秒前
Bingtao_Lian完成签到 ,获得积分10
26秒前
27秒前
专注的月亮完成签到,获得积分10
29秒前
32秒前
c123完成签到 ,获得积分10
41秒前
45秒前
野生菜狗发布了新的文献求助10
50秒前
NexusExplorer应助野生菜狗采纳,获得10
57秒前
1111chen完成签到 ,获得积分10
1分钟前
隐形曼青应助野生菜狗采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
onestepcloser完成签到 ,获得积分10
1分钟前
yuanyang发布了新的文献求助10
1分钟前
1分钟前
野生菜狗发布了新的文献求助10
2分钟前
Lucas应助辛一采纳,获得10
2分钟前
2分钟前
兴奋的若菱完成签到 ,获得积分10
2分钟前
yuanyang完成签到,获得积分10
2分钟前
溟濛发布了新的文献求助10
2分钟前
2分钟前
野生菜狗发布了新的文献求助10
2分钟前
泥娃娃完成签到,获得积分10
2分钟前
帝蒼完成签到,获得积分10
2分钟前
冷酷愚志完成签到,获得积分10
3分钟前
小洁完成签到 ,获得积分10
3分钟前
严珍珍完成签到 ,获得积分10
3分钟前
野生菜狗发布了新的文献求助10
3分钟前
墨言无殇完成签到 ,获得积分10
3分钟前
tszjw168完成签到 ,获得积分10
4分钟前
4分钟前
辛一完成签到,获得积分10
4分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372856
求助须知:如何正确求助?哪些是违规求助? 2990391
关于积分的说明 8740961
捐赠科研通 2674069
什么是DOI,文献DOI怎么找? 1464838
科研通“疑难数据库(出版商)”最低求助积分说明 677681
邀请新用户注册赠送积分活动 669082