已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep residual convolutional neural network for mineral classification

高光谱成像 明矾石 计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 遥感 地质学 热液循环 地震学
作者
Neelam Agrawal,Himanshu Govil
出处
期刊:Advances in Space Research [Elsevier]
卷期号:71 (8): 3186-3202 被引量:20
标识
DOI:10.1016/j.asr.2022.12.028
摘要

In recent years, the deep learning computing paradigm has revolutionized the way of remote sensing data analysis. The emerging hyperspectral remote sensing has paved the way for the efficient and accurate exploration of the minute features of the earth’s surface due to the increased number of contiguous spectral bands. Hence, hyperspectral images can efficiently impart useful information about mineral resources for precise discrimination and identification in lithological studies. Rapid advancements in computing capabilities and deep learning techniques give the research community a new impulse to develop advanced, robust, and efficient hyperspectral remote sensing-based mineral classification frameworks. The present study aims to introduce two novel deep learning-based mineral classification frameworks: mineral-CNN-LSTM and mineral-ResNet. The architecture of mineral-CNN-LSTM is based on 1D-CNN and LSTM model, whereas the architecture of mineral-ResNet is based on 1D-CNN, LSTM model, and residual connections. The frameworks use raw data as input without feature selection or data augmentation preprocessing steps. The widely used early stop method is also utilized to prevent overfitting of the framework during the training process. The experimental evaluation carried out over the AVIRIS hyperspectral image scene of the Cuprite mining area confirms that the mineral-ResNet can effectively identify most of the minerals such as Alunite, Calcite, Halloysite, Kaolinite, Montmorillonite, Muscovite, Chalcedony with the overall accuracy of 92.16%, and kappa value of 0.89 and mineral-CNN-LSTM achieved the overall accuracy of 91.71% and kappa value of 0.88 for these minerals. Furthermore, a comparative evaluation of the proposed frameworks has been performed with widely used Convolutional Neural Network (CNN) based architectures such as VGG19, VGG16, ResNet-50, and AlexNet; and various machine learning based classifiers. The proposed architectures offer better performance with shorter testing and training time than these existing CNN-based architectures. The proposed framework could be useful for other earth observation-related applications in various fields such as agriculture, forestry, geology, hydrology, ecology, urban planning, military and defense applications, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助guojingjing采纳,获得10
2秒前
3秒前
abb先生发布了新的文献求助10
5秒前
7秒前
YT发布了新的文献求助10
9秒前
火鸡味锅巴完成签到 ,获得积分10
11秒前
cqhecq完成签到,获得积分10
11秒前
感谢发布了新的文献求助10
11秒前
格物完成签到,获得积分10
14秒前
浮游应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
哈基米德应助科研通管家采纳,获得20
18秒前
18秒前
Perry应助激昂的画笔采纳,获得30
19秒前
小小鱼完成签到 ,获得积分10
24秒前
26秒前
27秒前
luocan完成签到,获得积分10
29秒前
29秒前
怡然剑成完成签到 ,获得积分10
30秒前
吼吼哈嘿发布了新的文献求助10
30秒前
万能图书馆应助可乐采纳,获得10
31秒前
枫威完成签到 ,获得积分10
31秒前
32秒前
32秒前
自觉匪完成签到 ,获得积分10
32秒前
果果发布了新的文献求助10
32秒前
小波完成签到 ,获得积分10
34秒前
善学以致用应助duoduoqian采纳,获得30
34秒前
了了发布了新的文献求助10
34秒前
脑洞疼应助李小小采纳,获得10
37秒前
hcsdgf完成签到 ,获得积分10
38秒前
mwm完成签到 ,获得积分10
38秒前
了了完成签到,获得积分10
44秒前
领导范儿应助故意的幻然采纳,获得10
49秒前
浮游应助我还是做条鱼吧采纳,获得10
51秒前
无花果应助俏皮短靴采纳,获得10
53秒前
SHF完成签到,获得积分10
53秒前
何木木完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144