A deep residual convolutional neural network for mineral classification

高光谱成像 明矾石 计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 遥感 地质学 热液循环 地震学
作者
Neelam Agrawal,Himanshu Govil
出处
期刊:Advances in Space Research [Elsevier BV]
卷期号:71 (8): 3186-3202 被引量:20
标识
DOI:10.1016/j.asr.2022.12.028
摘要

In recent years, the deep learning computing paradigm has revolutionized the way of remote sensing data analysis. The emerging hyperspectral remote sensing has paved the way for the efficient and accurate exploration of the minute features of the earth’s surface due to the increased number of contiguous spectral bands. Hence, hyperspectral images can efficiently impart useful information about mineral resources for precise discrimination and identification in lithological studies. Rapid advancements in computing capabilities and deep learning techniques give the research community a new impulse to develop advanced, robust, and efficient hyperspectral remote sensing-based mineral classification frameworks. The present study aims to introduce two novel deep learning-based mineral classification frameworks: mineral-CNN-LSTM and mineral-ResNet. The architecture of mineral-CNN-LSTM is based on 1D-CNN and LSTM model, whereas the architecture of mineral-ResNet is based on 1D-CNN, LSTM model, and residual connections. The frameworks use raw data as input without feature selection or data augmentation preprocessing steps. The widely used early stop method is also utilized to prevent overfitting of the framework during the training process. The experimental evaluation carried out over the AVIRIS hyperspectral image scene of the Cuprite mining area confirms that the mineral-ResNet can effectively identify most of the minerals such as Alunite, Calcite, Halloysite, Kaolinite, Montmorillonite, Muscovite, Chalcedony with the overall accuracy of 92.16%, and kappa value of 0.89 and mineral-CNN-LSTM achieved the overall accuracy of 91.71% and kappa value of 0.88 for these minerals. Furthermore, a comparative evaluation of the proposed frameworks has been performed with widely used Convolutional Neural Network (CNN) based architectures such as VGG19, VGG16, ResNet-50, and AlexNet; and various machine learning based classifiers. The proposed architectures offer better performance with shorter testing and training time than these existing CNN-based architectures. The proposed framework could be useful for other earth observation-related applications in various fields such as agriculture, forestry, geology, hydrology, ecology, urban planning, military and defense applications, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ynchendt完成签到,获得积分10
1秒前
伶俐的安波完成签到,获得积分10
1秒前
停婷发布了新的文献求助10
1秒前
leisure发布了新的文献求助10
1秒前
完美世界应助HGQ采纳,获得10
1秒前
聪明的三问完成签到,获得积分10
2秒前
小young完成签到 ,获得积分10
3秒前
霸气乘风发布了新的文献求助20
4秒前
HenryXiao发布了新的文献求助10
5秒前
科研通AI2S应助wmx采纳,获得10
5秒前
5秒前
yaoyulin完成签到,获得积分20
6秒前
xyx945应助苹果采纳,获得10
6秒前
羞涩的怀蝶完成签到,获得积分10
7秒前
舍瓦完成签到,获得积分10
7秒前
7秒前
Hello应助书虫采纳,获得10
8秒前
8秒前
FashionBoy应助leisure采纳,获得10
9秒前
10秒前
10秒前
10秒前
11秒前
与山发布了新的文献求助10
11秒前
zyw发布了新的文献求助10
12秒前
朦胧的晓山完成签到,获得积分10
12秒前
万能图书馆应助steventj采纳,获得10
12秒前
船船应助libobobo采纳,获得10
12秒前
囚徒发布了新的文献求助10
12秒前
年年完成签到,获得积分10
13秒前
13秒前
GingerF应助CC采纳,获得80
13秒前
HGQ发布了新的文献求助10
13秒前
14秒前
爱听歌的书本完成签到,获得积分10
14秒前
邹万恶发布了新的文献求助10
14秒前
14秒前
14秒前
麦香鱼完成签到 ,获得积分10
14秒前
DD完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650