A deep residual convolutional neural network for mineral classification

高光谱成像 明矾石 计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 遥感 地质学 热液循环 地震学
作者
Neelam Agrawal,Himanshu Govil
出处
期刊:Advances in Space Research [Elsevier]
卷期号:71 (8): 3186-3202 被引量:20
标识
DOI:10.1016/j.asr.2022.12.028
摘要

In recent years, the deep learning computing paradigm has revolutionized the way of remote sensing data analysis. The emerging hyperspectral remote sensing has paved the way for the efficient and accurate exploration of the minute features of the earth’s surface due to the increased number of contiguous spectral bands. Hence, hyperspectral images can efficiently impart useful information about mineral resources for precise discrimination and identification in lithological studies. Rapid advancements in computing capabilities and deep learning techniques give the research community a new impulse to develop advanced, robust, and efficient hyperspectral remote sensing-based mineral classification frameworks. The present study aims to introduce two novel deep learning-based mineral classification frameworks: mineral-CNN-LSTM and mineral-ResNet. The architecture of mineral-CNN-LSTM is based on 1D-CNN and LSTM model, whereas the architecture of mineral-ResNet is based on 1D-CNN, LSTM model, and residual connections. The frameworks use raw data as input without feature selection or data augmentation preprocessing steps. The widely used early stop method is also utilized to prevent overfitting of the framework during the training process. The experimental evaluation carried out over the AVIRIS hyperspectral image scene of the Cuprite mining area confirms that the mineral-ResNet can effectively identify most of the minerals such as Alunite, Calcite, Halloysite, Kaolinite, Montmorillonite, Muscovite, Chalcedony with the overall accuracy of 92.16%, and kappa value of 0.89 and mineral-CNN-LSTM achieved the overall accuracy of 91.71% and kappa value of 0.88 for these minerals. Furthermore, a comparative evaluation of the proposed frameworks has been performed with widely used Convolutional Neural Network (CNN) based architectures such as VGG19, VGG16, ResNet-50, and AlexNet; and various machine learning based classifiers. The proposed architectures offer better performance with shorter testing and training time than these existing CNN-based architectures. The proposed framework could be useful for other earth observation-related applications in various fields such as agriculture, forestry, geology, hydrology, ecology, urban planning, military and defense applications, etc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Damon发布了新的文献求助10
3秒前
点点完成签到 ,获得积分10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
aircraft06完成签到,获得积分10
9秒前
Moonchild完成签到 ,获得积分10
11秒前
大模型应助Damon采纳,获得30
11秒前
我很好完成签到 ,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
23秒前
吱吱发布了新的文献求助10
27秒前
elsa622完成签到 ,获得积分10
29秒前
无心的天真完成签到 ,获得积分10
33秒前
蓝色花生豆完成签到,获得积分10
37秒前
风趣朝雪完成签到,获得积分10
38秒前
shuoliu完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
47秒前
kk完成签到,获得积分10
47秒前
jun完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
52秒前
whuhustwit完成签到,获得积分10
52秒前
56秒前
整齐豆芽完成签到 ,获得积分10
56秒前
吉吉完成签到,获得积分10
59秒前
甜甜信封完成签到,获得积分10
1分钟前
Damon发布了新的文献求助30
1分钟前
jiang完成签到 ,获得积分10
1分钟前
木木杨完成签到,获得积分10
1分钟前
凡凡完成签到,获得积分10
1分钟前
乐乐应助dejavu采纳,获得10
1分钟前
Fiona完成签到 ,获得积分10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
moon完成签到 ,获得积分10
1分钟前
Adam罗完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
sjw525完成签到,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
jiangjiang完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664721
求助须知:如何正确求助?哪些是违规求助? 4868293
关于积分的说明 15108389
捐赠科研通 4823414
什么是DOI,文献DOI怎么找? 2582282
邀请新用户注册赠送积分活动 1536330
关于科研通互助平台的介绍 1494765