Using Highly Compressed Gradients in Federated Learning for Data Reconstruction Attacks

计算机科学 初始化 压缩传感 水准点(测量) 压缩比 噪音(视频) 降噪 数据压缩 随机梯度下降算法 人工智能 人工神经网络 图像(数学) 内燃机 大地测量学 地理 程序设计语言 汽车工程 工程类
作者
Haomiao Yang,Mengyu Ge,Kunlan Xiang,Jingwei Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 818-830 被引量:16
标识
DOI:10.1109/tifs.2022.3227761
摘要

Federated learning (FL) preserves data privacy by exchanging gradients instead of local training data. However, these private data can still be reconstructed from the exchanged gradients. Deep leakage from gradients (DLG) is a classical reconstruction attack that optimizes dummy data to real data by making the corresponding dummy and real gradients as similar as possible. Nevertheless, DLG fails with highly compressed gradients, which are crucial for communication-efficient FL. In this study, we propose an effective data reconstruction attack against highly compressed gradients, called highly compressed gradient leakage attack (HCGLA). In particular, HCGLA is characterized by the following three key techniques: 1) Owing to the unreasonable optimization objective of DLG in compression scenarios, we redesign a plausible objective function, ensuring that compressed dummy gradients are similar to the compressed real gradients. 2) Instead of simply initializing dummy data through random noise, as in DLG, we design a novel dummy data initialization method, Init-Generation, to compensate for information loss caused by gradient compression. 3) To further enhance reconstruction quality, we train an ad hoc denoising model using the methods of “first optimizing, next filtering, and then reoptimizing”. Extensive experiments on various benchmark data sets and mainstream models show that HCGLA is an effective reconstruction attack even against highly compressed gradients of 0.1%, whereas state-of-the-art attacks can only support 70% compression, thereby achieving a 700-fold improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋以山完成签到,获得积分10
刚刚
1秒前
平平无奇完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
英姑应助江上采纳,获得10
2秒前
3秒前
学术白银完成签到 ,获得积分10
3秒前
4秒前
呆萌思远发布了新的文献求助10
4秒前
耿鬼发布了新的文献求助10
4秒前
4秒前
aaron完成签到,获得积分10
4秒前
5秒前
5秒前
科目三应助cccccc采纳,获得10
5秒前
5秒前
Savannah发布了新的文献求助10
5秒前
6秒前
6秒前
小蘑菇应助月不笑采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
花卷驳回了赘婿应助
7秒前
7秒前
7秒前
7秒前
ooooozhubi完成签到 ,获得积分10
9秒前
慕青应助boyal采纳,获得10
9秒前
一灯大师发布了新的文献求助10
9秒前
慕青应助sonia0720采纳,获得10
9秒前
血小板发布了新的文献求助10
9秒前
共享精神应助沉默是金采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
无花果应助西红柿炒番茄采纳,获得10
10秒前
huangxihui发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785