Using Highly Compressed Gradients in Federated Learning for Data Reconstruction Attacks

计算机科学 初始化 压缩传感 水准点(测量) 压缩比 噪音(视频) 降噪 数据压缩 随机梯度下降算法 人工智能 人工神经网络 图像(数学) 内燃机 大地测量学 地理 程序设计语言 汽车工程 工程类
作者
Haomiao Yang,Mengyu Ge,Kunlan Xiang,Jingwei Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 818-830 被引量:16
标识
DOI:10.1109/tifs.2022.3227761
摘要

Federated learning (FL) preserves data privacy by exchanging gradients instead of local training data. However, these private data can still be reconstructed from the exchanged gradients. Deep leakage from gradients (DLG) is a classical reconstruction attack that optimizes dummy data to real data by making the corresponding dummy and real gradients as similar as possible. Nevertheless, DLG fails with highly compressed gradients, which are crucial for communication-efficient FL. In this study, we propose an effective data reconstruction attack against highly compressed gradients, called highly compressed gradient leakage attack (HCGLA). In particular, HCGLA is characterized by the following three key techniques: 1) Owing to the unreasonable optimization objective of DLG in compression scenarios, we redesign a plausible objective function, ensuring that compressed dummy gradients are similar to the compressed real gradients. 2) Instead of simply initializing dummy data through random noise, as in DLG, we design a novel dummy data initialization method, Init-Generation, to compensate for information loss caused by gradient compression. 3) To further enhance reconstruction quality, we train an ad hoc denoising model using the methods of “first optimizing, next filtering, and then reoptimizing”. Extensive experiments on various benchmark data sets and mainstream models show that HCGLA is an effective reconstruction attack even against highly compressed gradients of 0.1%, whereas state-of-the-art attacks can only support 70% compression, thereby achieving a 700-fold improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cowboy007完成签到,获得积分10
刚刚
张振宇完成签到 ,获得积分10
1秒前
zz发布了新的文献求助10
2秒前
zzq778发布了新的文献求助10
4秒前
黄怡婷完成签到 ,获得积分10
4秒前
Daisy应助科研通管家采纳,获得10
5秒前
机智苗应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
yanmu2010应助科研通管家采纳,获得10
5秒前
kingwill应助科研通管家采纳,获得20
6秒前
银包铜应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Lucas完成签到,获得积分10
8秒前
C胖胖完成签到,获得积分10
8秒前
舒心的完成签到,获得积分10
8秒前
zz完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
luozejun完成签到,获得积分10
11秒前
ycp完成签到,获得积分10
12秒前
dawang完成签到 ,获得积分10
12秒前
洁净的智宸完成签到 ,获得积分10
12秒前
zhaopeipei发布了新的文献求助10
12秒前
eternity136完成签到,获得积分10
12秒前
13秒前
SciGPT应助zz采纳,获得10
13秒前
科研欣路完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029