亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Highly Compressed Gradients in Federated Learning for Data Reconstruction Attacks

计算机科学 初始化 压缩传感 水准点(测量) 压缩比 噪音(视频) 降噪 数据压缩 随机梯度下降算法 人工智能 人工神经网络 图像(数学) 内燃机 大地测量学 地理 程序设计语言 汽车工程 工程类
作者
Haomiao Yang,Mengyu Ge,Kunlan Xiang,Jingwei Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 818-830 被引量:16
标识
DOI:10.1109/tifs.2022.3227761
摘要

Federated learning (FL) preserves data privacy by exchanging gradients instead of local training data. However, these private data can still be reconstructed from the exchanged gradients. Deep leakage from gradients (DLG) is a classical reconstruction attack that optimizes dummy data to real data by making the corresponding dummy and real gradients as similar as possible. Nevertheless, DLG fails with highly compressed gradients, which are crucial for communication-efficient FL. In this study, we propose an effective data reconstruction attack against highly compressed gradients, called highly compressed gradient leakage attack (HCGLA). In particular, HCGLA is characterized by the following three key techniques: 1) Owing to the unreasonable optimization objective of DLG in compression scenarios, we redesign a plausible objective function, ensuring that compressed dummy gradients are similar to the compressed real gradients. 2) Instead of simply initializing dummy data through random noise, as in DLG, we design a novel dummy data initialization method, Init-Generation, to compensate for information loss caused by gradient compression. 3) To further enhance reconstruction quality, we train an ad hoc denoising model using the methods of “first optimizing, next filtering, and then reoptimizing”. Extensive experiments on various benchmark data sets and mainstream models show that HCGLA is an effective reconstruction attack even against highly compressed gradients of 0.1%, whereas state-of-the-art attacks can only support 70% compression, thereby achieving a 700-fold improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
种下梧桐树完成签到 ,获得积分10
50秒前
小橘子吃傻子完成签到,获得积分10
57秒前
科研通AI2S应助倪妮采纳,获得10
1分钟前
传奇3应助倪妮采纳,获得50
1分钟前
昏睡的丸子完成签到,获得积分10
1分钟前
1分钟前
orixero应助盼盼采纳,获得10
1分钟前
2分钟前
HMYX完成签到 ,获得积分10
2分钟前
2分钟前
qft发布了新的文献求助10
2分钟前
2分钟前
倪妮发布了新的文献求助50
2分钟前
Ava应助不安的靖柔采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
ymr发布了新的文献求助10
2分钟前
ymr发布了新的文献求助10
2分钟前
ymr发布了新的文献求助10
2分钟前
起风了完成签到 ,获得积分10
2分钟前
ymr发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
SciGPT应助糖糖的冰镇啤酒采纳,获得10
3分钟前
不安的靖柔完成签到,获得积分10
3分钟前
lzd发布了新的文献求助10
3分钟前
Jasper应助yeyeye采纳,获得10
3分钟前
3分钟前
柒柒发布了新的文献求助30
3分钟前
lzd完成签到,获得积分10
3分钟前
4分钟前
轻松的采柳完成签到 ,获得积分10
4分钟前
虚拟的清炎完成签到 ,获得积分10
4分钟前
yeyeye发布了新的文献求助10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104795
求助须知:如何正确求助?哪些是违规求助? 4314873
关于积分的说明 13443807
捐赠科研通 4143302
什么是DOI,文献DOI怎么找? 2270281
邀请新用户注册赠送积分活动 1272797
关于科研通互助平台的介绍 1209743