Application of Defined Approaches to Assess Skin Sensitization Potency of Isothiazolinone Compounds

局部淋巴结试验 皮肤致敏 敏化 效力 化妆品 医学 危害 药理学 毒理 化学 免疫学 体外 生物 病理 生物化学 有机化学
作者
Judy Strickland,David Allen,Dori R. Germolec,Nicole Kleinstreuer,Victor J. Johnson,Travis V. Gulledge,Jim Truax,Anna Lowit,Timothy Dole,Timothy F. McMahon,Melissa Panger,Judy Facey,Stephen J. Savage
出处
期刊:Applied in vitro toxicology [Mary Ann Liebert]
卷期号:8 (4): 117-128 被引量:6
标识
DOI:10.1089/aivt.2022.0014
摘要

Isothiazolinones (ITs) are widely used as antimicrobial preservatives in cosmetics and as additives for preservation of consumer and industrial products to control bacteria, fungi, and algae. Although they are effective biocides, they have the potential to produce skin irritation and sensitization, which poses a human health hazard. In this project, we evaluated nonanimal defined approaches (DAs) for skin sensitization that can provide point-of-departure estimates for use in quantitative risk assessment for ITs.The skin sensitization potential of six ITs was evaluated using three internationally harmonized nonanimal test methods: the direct peptide reactivity assay, KeratinoSens™, and the human cell line activation test. Results from these test methods were then applied to two versions of the Shiseido Artificial Neural Network DA.Sensitization hazard or potency predictions were compared with those of the in vivo murine local lymph node assay (LLNA). The nonanimal methods produced skin sensitization hazard and potency classifications concordant with those of the LLNA. EC3 values (the estimated concentration needed to produce a stimulation index of three, the threshold positive response) generated by the DAs had less variability than LLNA EC3 values, and confidence limits from the DAs overlapped those of the LLNA EC3 for most substances.The application of in silico models to in chemico and in vitro skin sensitization data is a promising data integration procedure for DAs to support hazard and potency classification and quantitative risk assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lx发布了新的文献求助10
刚刚
舒适念真发布了新的文献求助10
刚刚
沉默哈密瓜完成签到 ,获得积分10
1秒前
身处人海完成签到,获得积分10
1秒前
Singularity应助暴躁的安柏采纳,获得10
1秒前
Singularity应助暴躁的安柏采纳,获得10
1秒前
大模型应助皓月千里采纳,获得10
1秒前
1秒前
Jim完成签到,获得积分10
2秒前
尼亚吉拉发布了新的文献求助10
2秒前
sternen发布了新的文献求助30
2秒前
2秒前
2秒前
迪迦驳回了所所应助
3秒前
猪猪hero发布了新的文献求助10
3秒前
热心芷烟完成签到,获得积分10
3秒前
3秒前
敏捷的猪猪侠完成签到,获得积分10
4秒前
4秒前
4秒前
咕噜仔发布了新的文献求助50
4秒前
诚c发布了新的文献求助10
5秒前
5秒前
饭宝发布了新的文献求助10
6秒前
SciGPT应助大胆的期待采纳,获得10
6秒前
奋斗夏烟完成签到,获得积分20
6秒前
气泡水完成签到 ,获得积分10
6秒前
rosy完成签到,获得积分10
7秒前
rjy完成签到 ,获得积分10
7秒前
8秒前
沙111发布了新的文献求助10
8秒前
MADKAI发布了新的文献求助10
8秒前
9秒前
zhoull完成签到 ,获得积分10
9秒前
9秒前
9秒前
学术蝗虫发布了新的文献求助10
9秒前
aurora完成签到,获得积分10
10秒前
bopbopbaby发布了新的文献求助200
10秒前
sll完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678