Application of Defined Approaches to Assess Skin Sensitization Potency of Isothiazolinone Compounds

局部淋巴结试验 皮肤致敏 敏化 效力 化妆品 医学 危害 药理学 毒理 化学 免疫学 体外 生物 病理 生物化学 有机化学
作者
Judy Strickland,David Allen,Dori R. Germolec,Nicole Kleinstreuer,Victor J. Johnson,Travis V. Gulledge,Jim Truax,Anna Lowit,Timothy Dole,Timothy F. McMahon,Melissa Panger,Judy Facey,Stephen J. Savage
出处
期刊:Applied in vitro toxicology [Mary Ann Liebert, Inc.]
卷期号:8 (4): 117-128 被引量:6
标识
DOI:10.1089/aivt.2022.0014
摘要

Isothiazolinones (ITs) are widely used as antimicrobial preservatives in cosmetics and as additives for preservation of consumer and industrial products to control bacteria, fungi, and algae. Although they are effective biocides, they have the potential to produce skin irritation and sensitization, which poses a human health hazard. In this project, we evaluated nonanimal defined approaches (DAs) for skin sensitization that can provide point-of-departure estimates for use in quantitative risk assessment for ITs.The skin sensitization potential of six ITs was evaluated using three internationally harmonized nonanimal test methods: the direct peptide reactivity assay, KeratinoSens™, and the human cell line activation test. Results from these test methods were then applied to two versions of the Shiseido Artificial Neural Network DA.Sensitization hazard or potency predictions were compared with those of the in vivo murine local lymph node assay (LLNA). The nonanimal methods produced skin sensitization hazard and potency classifications concordant with those of the LLNA. EC3 values (the estimated concentration needed to produce a stimulation index of three, the threshold positive response) generated by the DAs had less variability than LLNA EC3 values, and confidence limits from the DAs overlapped those of the LLNA EC3 for most substances.The application of in silico models to in chemico and in vitro skin sensitization data is a promising data integration procedure for DAs to support hazard and potency classification and quantitative risk assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MIST完成签到,获得积分10
1秒前
mochaff完成签到 ,获得积分10
1秒前
温暖的颜演完成签到 ,获得积分10
1秒前
WYang完成签到,获得积分10
1秒前
阿策完成签到,获得积分10
3秒前
小白白完成签到 ,获得积分10
5秒前
5秒前
风信子完成签到,获得积分10
6秒前
无机盐完成签到 ,获得积分10
6秒前
Cold-Drink-Shop完成签到,获得积分10
7秒前
whqpeter发布了新的文献求助10
10秒前
mmmmmmgm完成签到 ,获得积分10
12秒前
xiaofeng5838完成签到,获得积分10
17秒前
aoyo完成签到,获得积分10
19秒前
成长crs完成签到 ,获得积分10
19秒前
帅气的宽完成签到 ,获得积分10
23秒前
华仔应助靓丽的悒采纳,获得10
24秒前
Lucky完成签到 ,获得积分10
27秒前
Joy完成签到,获得积分10
30秒前
huminjie完成签到 ,获得积分10
32秒前
feng完成签到,获得积分10
33秒前
35秒前
研友_ZA2B68完成签到,获得积分0
36秒前
wei发布了新的文献求助10
38秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
40秒前
要自律的锅完成签到 ,获得积分10
41秒前
勤恳的书文完成签到 ,获得积分10
41秒前
靓丽的悒完成签到 ,获得积分10
42秒前
123123完成签到 ,获得积分10
43秒前
xiaoyi完成签到 ,获得积分10
44秒前
RenY完成签到,获得积分10
45秒前
灯座发布了新的文献求助10
47秒前
李璟文完成签到 ,获得积分10
47秒前
47秒前
Zhjie126完成签到,获得积分10
48秒前
Chris完成签到 ,获得积分0
50秒前
fancy发布了新的文献求助10
52秒前
53秒前
sa0022完成签到,获得积分10
54秒前
chenkj完成签到,获得积分10
55秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212353
求助须知:如何正确求助?哪些是违规求助? 4388551
关于积分的说明 13664063
捐赠科研通 4249022
什么是DOI,文献DOI怎么找? 2331365
邀请新用户注册赠送积分活动 1329024
关于科研通互助平台的介绍 1282440