深度学习
归一化差异植被指数
农业
多光谱图像
农业工程
领域(数学)
机器学习
产量(工程)
卫星
生产(经济)
人工智能
植被(病理学)
环境科学
卫星图像
基督教牧师
作物产量
农业生产力
遥感
计算机科学
地理
数学
工程类
农学
叶面积指数
考古
神学
纯数学
材料科学
冶金
经济
航空航天工程
病理
宏观经济学
哲学
医学
生物
作者
Luis-Roberto Jácome-Galarza
出处
期刊:Communications in computer and information science
日期:2022-01-01
卷期号:: 106-117
标识
DOI:10.1007/978-3-031-18347-8_9
摘要
Precision agriculture is a vital practice for improving the production of crops. The present work is aimed to develop a deep learning multimodal model that can predict the crop yield in Ecuadorian corn farms. The model takes multispectral images and field sensor data (humidity, temperature, or soil status) to obtain the yield of a crop. The use of multimodal data is aimed to extract hidden patterns in the status of crops and in this way obtain better results than the use of vegetation indices or other state-of-the-art methods. For the experiments, we utilized multi-spectral satellite images obtained from the google earth engine platform and monthly precipitation and temperature data of the 24 Ecuadorian provinces collected from the Ecuadorian Ministry of agriculture and livestock; likewise, we obtained the area of corn plantation in each province and their corn production for the years 2016 to 2020. Results indicate that the use of multimodal deep learning models (pre-trained CNN for images and LSTM for time series sensor data) gives better prediction accuracy than monomodal prediction models.
科研通智能强力驱动
Strongly Powered by AbleSci AI