Improved Accuracy and Lowered Learning Curve of Ventricular Targeting Using Augmented Reality—Phantom and Cadaveric Model Testing

成像体模 尸体痉挛 医学 尸体 核医学 生物医学工程 外科
作者
Michael T. Bounajem,Brandon Cameron,Kiel Sorensen,Ryan Parr,Wendell A. Gibby,Giyarpuram N. Prashant,James Evans,Michael Karsy
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:92 (4): 884-891 被引量:10
标识
DOI:10.1227/neu.0000000000002293
摘要

BACKGROUND: Augmented reality (AR) has demonstrated significant potential in neurosurgical cranial, spine, and teaching applications. External ventricular drain (EVD) placement remains a common procedure, but with error rates in targeting between 10% and 40%. OBJECTIVE: To evaluate Novarad VisAR guidance system for the placement of EVDs in phantom and cadaveric models. METHODS: Two synthetic ventricular phantom models and a third cadaver model underwent computerized tomography imaging and registration with the VisAR system (Novarad). Root mean square (RMS), angular error (γ), and Euclidian distance were measured by multiple methods for various standard EVD placements. RESULTS: Computerized tomography measurements on a phantom model (0.5-mm targets showed a mean Euclidean distance error of 1.20 ± 0.98 mm and γ of 1.25° ± 1.02°. Eight participants placed EVDs in lateral and occipital burr holes using VisAR in a second phantom anatomic ventricular model (mean RMS: 3.9 ± 1.8 mm, γ: 3.95° ± 1.78°). There were no statistically significant differences in accuracy for postgraduate year level, prior AR experience, prior EVD experience, or experience with video games ( P > .05). In comparing EVDs placed with anatomic landmarks vs VisAR navigation in a cadaver, VisAR demonstrated significantly better RMS and γ, 7.47 ± 0.94 mm and 7.12° ± 0.97°, respectively ( P ≤ .05). CONCLUSION: The novel VisAR AR system resulted in accurate placement of EVDs with a rapid learning curve, which may improve clinical treatment and patient safety. Future applications of VisAR can be expanded to other cranial procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李先生完成签到,获得积分20
2秒前
2秒前
bkagyin应助路过的风景采纳,获得10
3秒前
4秒前
可爱的函函应助likes采纳,获得20
4秒前
光催化完成签到 ,获得积分10
4秒前
咖可乐发布了新的文献求助10
4秒前
酷波er应助潇然采纳,获得10
4秒前
6秒前
西奥完成签到 ,获得积分10
8秒前
9秒前
酷炫翠桃发布了新的文献求助10
10秒前
00发布了新的文献求助10
12秒前
羊驼达人完成签到,获得积分10
12秒前
小鱼发布了新的文献求助10
15秒前
16秒前
17秒前
tramp应助科研小白采纳,获得20
17秒前
wang发布了新的文献求助30
20秒前
21秒前
向阳而生发布了新的文献求助10
21秒前
cc完成签到 ,获得积分20
21秒前
22秒前
Maestro_S应助euphoria采纳,获得20
22秒前
lz完成签到,获得积分10
23秒前
24秒前
cc关注了科研通微信公众号
25秒前
26秒前
28秒前
伊麦香城发布了新的文献求助10
29秒前
kkjl发布了新的文献求助10
32秒前
Loik完成签到,获得积分20
33秒前
笑点低的元枫完成签到 ,获得积分10
34秒前
玊尔发布了新的文献求助30
34秒前
35秒前
35秒前
科研通AI2S应助酷炫翠桃采纳,获得10
36秒前
meta完成签到,获得积分10
39秒前
40秒前
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136196
求助须知:如何正确求助?哪些是违规求助? 2787119
关于积分的说明 7780500
捐赠科研通 2443236
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870