矽肺
肺纤维化
纤维化
癌症研究
免疫学
肿瘤坏死因子α
下调和上调
医学
生物
病理
生物化学
基因
作者
Mingcui Ding,Yangqing Pei,Chengpeng Zhang,Yuanmeng Qi,Jiarui Xia,Changfu Hao,Wu Yao
标识
DOI:10.1016/j.ecoenv.2022.114401
摘要
Silicosis caused by long-term inhalation of crystalline silica during occupational activities seriously threatens the health of occupational populations. Imbalances in T helper 1(Th1), Th2, Th17, and regulatory T cells (Tregs) promote the development of pulmonary silicosis. Exosomes and their contents, especially microRNAs (miRNAs), represent a new type of intercellular signal transmission mediator related to various diseases including pulmonary fibrosis. However, whether exosomal miRNAs can affect the progression of silicosis by regulating T cell differentiation remains to be determined. To test this hypothesis, we established a miR-125a-5p antagomir mouse model and examined changes in miR-125a-5p levels and T cell subtypes. We found that miR-125a-5p levels were increased in lung tissues and serum exosomes in the silica group at 7 days and 28 days. Downregulation of miR-125a-5p attenuated α-smooth muscle actin (α-SMA), collagen I, fibronectin, p-p65, and p-inhibitor of nuclear factor kappa B (NF-κB) kinase (IKK) protein expression, while tumor necrosis factor receptor-associated factor 6 (TRAF6) and p-inhibitor of κBα (IKBα) expression were increased. MiR-125a-5p anta-miR treatment contributes to the maintenance of Th1/Th2 balance during the progression of pulmonary fibrosis. Our findings indicated that knockdown miR-125a-5p could regulate T lymphocyte subsets and significantly reduce pulmonary fibrosis by targeting TRAF6.
科研通智能强力驱动
Strongly Powered by AbleSci AI