Adaptive optimal trajectory tracking control of AUVs based on reinforcement learning

汉密尔顿-雅各比-贝尔曼方程 控制理论(社会学) 强化学习 控制器(灌溉) 计算机科学 反推 弹道 非线性系统 最优控制 有界函数 人工神经网络 跟踪误差 自适应控制 数学优化 数学 控制(管理) 人工智能 数学分析 物理 生物 量子力学 农学 天文
作者
Zhifu Li,Ming Wang,Ge Ma
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:137: 122-132 被引量:9
标识
DOI:10.1016/j.isatra.2022.12.003
摘要

In this paper, an adaptive model-free optimal reinforcement learning (RL) neural network (NN) control scheme based on filter error is proposed for the trajectory tracking control problem of an autonomous underwater vehicle (AUV) with input saturation. Generally, the optimal control is realized by solving the Hamilton-Jacobi-Bellman (HJB) equation. However, due to its inherent nonlinearity and complexity, the HJB equation of AUV dynamics is challenging to solve. To deal with this problem, an RL strategy based on an actor-critic framework is proposed to approximate the solution of the HJB equation, where actor and critic NNs are used to perform control behavior and evaluate control performance, respectively. In addition, for the AUV system with the second-order strict-feedback dynamic model, the optimal controller design method based on filtering errors is proposed for the first time to simplify the controller design and accelerate the response speed of the system. Then, to solve the model-dependent problem, an extended state observer (ESO) is designed to estimate the unknown nonlinear dynamics, and an adaptive law is designed to estimate the unknown model parameters. To deal with the input saturation, an auxiliary variable system is utilized in the control law. The strict Lyapunov analysis guarantees that all signals of the system are semi-global uniformly ultimately bounded (SGUUB). Finally, the superiority of the proposed method is verified by comparative experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Ava应助芝麻糊采纳,获得10
2秒前
2秒前
2秒前
2秒前
李爱国应助围炉煮茶采纳,获得10
3秒前
刘天强完成签到,获得积分10
3秒前
3秒前
博姐37完成签到 ,获得积分10
3秒前
3秒前
4秒前
CodeCraft应助dy采纳,获得10
4秒前
ww完成签到,获得积分10
5秒前
JinGN完成签到,获得积分0
5秒前
思源应助renpp822采纳,获得10
5秒前
6秒前
FashionBoy应助任夏采纳,获得20
6秒前
新星发布了新的文献求助50
6秒前
科研通AI6应助问题多多采纳,获得10
7秒前
科研通AI2S应助小潘同学采纳,获得10
7秒前
8秒前
威猛先生发布了新的文献求助10
8秒前
林剑立完成签到,获得积分10
8秒前
8秒前
chen发布了新的文献求助10
9秒前
9秒前
zzbbio发布了新的文献求助10
9秒前
崔凯完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
palu完成签到,获得积分10
9秒前
无花果应助甘雨露采纳,获得10
9秒前
所所应助sysi采纳,获得10
10秒前
李可汗完成签到 ,获得积分10
10秒前
酷波er应助sweat采纳,获得10
10秒前
2233完成签到,获得积分10
10秒前
约翰发布了新的文献求助10
10秒前
11秒前
qphys完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371