A Multi-Indicator Fusion-Based Approach for Fault Feature Selection and Classification of Rolling Bearings

模式识别(心理学) 特征提取 峰度 人工智能 熵(时间箭头) 计算机科学 特征选择 残余物 分类器(UML) 数据挖掘 数学 算法 统计 量子力学 物理
作者
Cheng Peng,Yuyao Ouyang,Weihua Gui,Changyun Li,Zhaohui Tang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (8): 8635-8643 被引量:16
标识
DOI:10.1109/tii.2022.3220905
摘要

Concerning the problems of harrowing extraction and poor classification accuracy of fault features in rolling bearing vibration signals, a fault feature selection and classification method based on multi-indicator fusion is proposed. First, the original signal is decomposed through the improved complementary ensemble local mean decomposition method into several physically meaningful product functions (PF) and single residual components; then, the three indicators of kurtosis, correlation coefficient, and Kulback–Leibler divergence are combined to extract the most suitable PF components for signal reconstruction. Ultimately, the reconstructed signal's multidomain characteristics and entropy value features are retrieved and fed into the LightGBM classifier for classification in order to achieve an intelligent diagnosis of rolling bearing problems. The statistical results demonstrate that the proposed method can efficiently identify the functional PF components and has notable benefits in extracting features from diverse experimental datasets and detecting faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nml完成签到,获得积分10
1秒前
廾匸发布了新的文献求助10
1秒前
木木发布了新的文献求助10
1秒前
1秒前
猪猪hero发布了新的文献求助10
1秒前
大模型应助柴犬采纳,获得10
2秒前
Junsir完成签到,获得积分10
3秒前
wanci应助微笑亿先采纳,获得10
3秒前
4秒前
Oatmeal5888完成签到,获得积分10
4秒前
乐一完成签到,获得积分20
4秒前
zqz完成签到,获得积分10
4秒前
4秒前
5秒前
小二郎应助淡定宛丝采纳,获得10
5秒前
5秒前
虚心惜筠发布了新的文献求助10
5秒前
Dean应助小猪猪采纳,获得50
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
正直映萱完成签到,获得积分10
7秒前
塘泥J完成签到,获得积分10
7秒前
呆萌的寄云完成签到,获得积分10
7秒前
8秒前
wikn完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI5应助勤奋的雪曼采纳,获得10
10秒前
cw关闭了cw文献求助
10秒前
10秒前
11秒前
高尚完成签到,获得积分10
11秒前
seesun发布了新的文献求助10
11秒前
12秒前
莫相逢完成签到,获得积分10
12秒前
leaolf应助cff采纳,获得10
13秒前
13秒前
赘婿应助青花采纳,获得10
14秒前
复杂函完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343