已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AMS-PAN: Breast ultrasound image segmentation model combining attention mechanism and multi-scale features

计算机科学 分割 人工智能 棱锥(几何) 特征(语言学) 深度学习 卷积神经网络 模式识别(心理学) 图像分割 计算机视觉 特征提取 语言学 光学 物理 哲学
作者
Yuchao Lyu,Yinghao Xu,Xi Jiang,Jianing Liu,Xiaoyan Zhao,Xijun Zhu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:81: 104425-104425 被引量:27
标识
DOI:10.1016/j.bspc.2022.104425
摘要

Breast ultrasound medical images are characterized by poor imaging quality and irregular target edges. During the diagnosis process, it is difficult for physicians to segment tumors manually, and the segmentation accuracy required for diagnosis is high, so there is an urgent need for an automated method to improve the segmentation accuracy as a technical tool to assist diagnosis. This study designed an improved Pyramid Attention Network combining Attention mechanism and Multi-Scale features (AMS-PAN) for breast ultrasound image segmentation. On the encoding side, the model adopts the depthwise separable convolution strategy to achieve a multi-scale receptive field with cumulative small-size convolution, which performs multi-dimensional feature extraction and forms a feature pyramid. The model uses Global Attention Upsample (GAU) feature fusion on the decoding side. In order to further process the fused feature information, the proposed method uses a Spatial and Channel Attention (SCA) module to shift the model’s segmentation focus to the edge texture information. The good segmentation performance of our method is verified through experiments on BUSI and OASBUD. All the designed parts have contributed to the segmentation performance in practical applications. Compared with the traditional non-deep learning methods and the current mainstream deep learning methods, the improvement of the model in Dice and IoU metrics is pronounced. AMS-PAN has high computational efficiency, and its good performance has been proven to play a role in ultrasound detection tasks of breast tumors for physicians to specific auxiliary diagnostic roles to guide the subsequent diagnosis and treatment services for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史国志完成签到 ,获得积分10
刚刚
Steven完成签到,获得积分10
1秒前
w1x2123完成签到,获得积分10
1秒前
1秒前
zzyh307完成签到 ,获得积分0
2秒前
勇敢的大野狼完成签到,获得积分10
4秒前
4秒前
花壳在逃野猪完成签到 ,获得积分10
5秒前
5秒前
Rory完成签到 ,获得积分10
6秒前
伊倾发布了新的文献求助50
6秒前
大模型应助耍酷依玉采纳,获得10
7秒前
8秒前
迷你的夜天完成签到 ,获得积分10
9秒前
9秒前
轻松元绿完成签到 ,获得积分10
10秒前
wise111完成签到,获得积分10
11秒前
木木发布了新的文献求助10
11秒前
pure完成签到 ,获得积分10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
wise111发布了新的文献求助20
14秒前
15秒前
www268完成签到 ,获得积分10
16秒前
yuntong完成签到 ,获得积分10
16秒前
YOLO完成签到 ,获得积分10
18秒前
日川冈坂完成签到 ,获得积分10
19秒前
裴敏完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136953
求助须知:如何正确求助?哪些是违规求助? 2787893
关于积分的说明 7783824
捐赠科研通 2443962
什么是DOI,文献DOI怎么找? 1299536
科研通“疑难数据库(出版商)”最低求助积分说明 625464
版权声明 600954