AMS-PAN: Breast ultrasound image segmentation model combining attention mechanism and multi-scale features

计算机科学 分割 人工智能 棱锥(几何) 特征(语言学) 深度学习 卷积神经网络 模式识别(心理学) 图像分割 计算机视觉 特征提取 语言学 光学 物理 哲学
作者
Yuchao Lyu,Yinghao Xu,Xi Jiang,Jianing Liu,Xiaoyan Zhao,Xijun Zhu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:81: 104425-104425 被引量:27
标识
DOI:10.1016/j.bspc.2022.104425
摘要

Breast ultrasound medical images are characterized by poor imaging quality and irregular target edges. During the diagnosis process, it is difficult for physicians to segment tumors manually, and the segmentation accuracy required for diagnosis is high, so there is an urgent need for an automated method to improve the segmentation accuracy as a technical tool to assist diagnosis. This study designed an improved Pyramid Attention Network combining Attention mechanism and Multi-Scale features (AMS-PAN) for breast ultrasound image segmentation. On the encoding side, the model adopts the depthwise separable convolution strategy to achieve a multi-scale receptive field with cumulative small-size convolution, which performs multi-dimensional feature extraction and forms a feature pyramid. The model uses Global Attention Upsample (GAU) feature fusion on the decoding side. In order to further process the fused feature information, the proposed method uses a Spatial and Channel Attention (SCA) module to shift the model’s segmentation focus to the edge texture information. The good segmentation performance of our method is verified through experiments on BUSI and OASBUD. All the designed parts have contributed to the segmentation performance in practical applications. Compared with the traditional non-deep learning methods and the current mainstream deep learning methods, the improvement of the model in Dice and IoU metrics is pronounced. AMS-PAN has high computational efficiency, and its good performance has been proven to play a role in ultrasound detection tasks of breast tumors for physicians to specific auxiliary diagnostic roles to guide the subsequent diagnosis and treatment services for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hjj发布了新的文献求助10
刚刚
gg完成签到,获得积分10
刚刚
狂野觅云发布了新的文献求助10
刚刚
坚强的广山应助iRan采纳,获得200
刚刚
刚刚
余姚发布了新的文献求助10
刚刚
刚刚
刚刚
哈哈发布了新的文献求助10
刚刚
洛尚发布了新的文献求助10
1秒前
ccc发布了新的文献求助10
1秒前
1秒前
潦草发布了新的文献求助10
2秒前
fighting完成签到,获得积分10
2秒前
2秒前
源源源完成签到 ,获得积分10
3秒前
HEIKU应助鲤鱼凛采纳,获得10
3秒前
luca完成签到,获得积分10
3秒前
3秒前
handsomecat完成签到,获得积分10
3秒前
4秒前
神勇的雅香应助gms采纳,获得10
4秒前
眯眯眼的衬衫应助cleva采纳,获得10
4秒前
激动的一手完成签到,获得积分10
4秒前
怕黑的海豚关注了科研通微信公众号
4秒前
艺玲发布了新的文献求助10
5秒前
irisjlj完成签到,获得积分10
6秒前
刘帅帅发布了新的文献求助10
6秒前
7秒前
7秒前
袅袅完成签到,获得积分10
7秒前
新的心跳发布了新的文献求助10
8秒前
wgx发布了新的文献求助10
8秒前
8秒前
DiviO_完成签到 ,获得积分10
8秒前
阳佟念真完成签到,获得积分10
8秒前
内向乞完成签到 ,获得积分10
10秒前
韭菜发布了新的文献求助10
10秒前
ludwig完成签到,获得积分10
10秒前
科研通AI5应助悦耳的冰枫采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759