Learning A Sparse Transformer Network for Effective Image Deraining

计算机科学 变压器 人工智能 模式识别(心理学) 特征(语言学) 数据挖掘 机器学习 物理 语言学 哲学 电压 量子力学
作者
Xiang Chen,Hao Li,Mingqiang Li,Jinshan Pan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2303.11950
摘要

Transformers-based methods have achieved significant performance in image deraining as they can model the non-local information which is vital for high-quality image reconstruction. In this paper, we find that most existing Transformers usually use all similarities of the tokens from the query-key pairs for the feature aggregation. However, if the tokens from the query are different from those of the key, the self-attention values estimated from these tokens also involve in feature aggregation, which accordingly interferes with the clear image restoration. To overcome this problem, we propose an effective DeRaining network, Sparse Transformer (DRSformer) that can adaptively keep the most useful self-attention values for feature aggregation so that the aggregated features better facilitate high-quality image reconstruction. Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is important for latent clear image restoration, we develop an effective mixed-scale feed-forward network to generate better features for image deraining. To learn an enriched set of hybrid features, which combines local context from CNN operators, we equip our model with mixture of experts feature compensator to present a cooperation refinement deraining scheme. Extensive experimental results on the commonly used benchmarks demonstrate that the proposed method achieves favorable performance against state-of-the-art approaches. The source code and trained models are available at https://github.com/cschenxiang/DRSformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力奇迹完成签到,获得积分10
1秒前
1秒前
11完成签到,获得积分10
1秒前
旷野发布了新的文献求助10
2秒前
hjw发布了新的文献求助10
2秒前
Jerry发布了新的文献求助20
2秒前
朴实一曲发布了新的文献求助10
2秒前
3秒前
3秒前
molly完成签到,获得积分10
5秒前
5秒前
77发布了新的文献求助30
6秒前
6秒前
6秒前
纯真盼芙完成签到,获得积分10
7秒前
江峰应助he采纳,获得10
9秒前
活力芝麻发布了新的文献求助10
9秒前
材料生发布了新的文献求助10
9秒前
13秒前
CipherSage应助_Charmo采纳,获得10
13秒前
挫巴的熊猫发布了新的文献求助100
13秒前
猫猫侠完成签到,获得积分10
13秒前
keep完成签到 ,获得积分10
14秒前
tunacan发布了新的文献求助10
14秒前
王大玉完成签到 ,获得积分10
14秒前
KKK完成签到,获得积分10
14秒前
爆米花应助grace采纳,获得10
14秒前
田様应助Watson_Lu采纳,获得10
15秒前
所所应助烟雨醉巷采纳,获得10
16秒前
一一应助lll采纳,获得20
16秒前
16秒前
17秒前
脑洞疼应助McGrady采纳,获得10
17秒前
阿言完成签到 ,获得积分10
17秒前
科目三应助professor_J采纳,获得10
17秒前
起名真难发布了新的文献求助10
19秒前
workwork完成签到,获得积分20
19秒前
Hollow完成签到,获得积分10
20秒前
风中盼易完成签到,获得积分10
20秒前
要杯热拿铁完成签到,获得积分20
20秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470791
求助须知:如何正确求助?哪些是违规求助? 3063758
关于积分的说明 9085407
捐赠科研通 2754254
什么是DOI,文献DOI怎么找? 1511347
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253