Hybrid Neuro-Particle Swarm Optimization Model for Predicting Depression in Asphalt Pavements

粒子群优化 平均绝对百分比误差 支持向量机 人工神经网络 可用性(结构) 均方误差 线性回归 统计 计算机科学 数学 算法 人工智能 工程类 结构工程
作者
Ralph Alwin M. de Jesus,Dante L. Silva
标识
DOI:10.1109/iccbd56965.2022.10080159
摘要

Roads are critical to the economic development of a country. Pavement distresses affects the serviceability of the roads and road maintenance significantly disrupts the traffic flow and consequently the economy in the surrounding area. The application of machine learning techniques coincides with the shift of several industries to Industry 4.0. The objective of this study is to forecast the depression % occurrence in an asphalt pavement using an artificial neural network (ANN)-particle swarm optimization (PSO) algorithm. The network was developed using the temperature, precipitation, pavement age, and average annual daily traffic (AADT) as the input parameters (IP). The governing model developed using the ANN-PSO algorithm has an architecture of 4-9-1 (input-hidden-output). The governing model has the highest R and lowest Mean Squared Error (MSE). The mean absolute percentage error (MAPE) of the governing model is 6.38%. Using the connection weights (CW) of the governing model, the variable significance of the IP was obtained utilizing the Garson's algorithm (GA) and the AADT is the most influential parameter to the depression % occurrence. Moreover, the governing ANN-PSO model was compared to other prediction modeling methods including ensemble of trees, linear regression, regression trees, and support vector machine (SVM) and it was seen that the ANN-PSO is the superior model among the methods observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nuonuo发布了新的文献求助10
刚刚
风中忆枫发布了新的文献求助10
刚刚
1秒前
Bepa发布了新的文献求助10
1秒前
是个聪明蛋完成签到,获得积分10
1秒前
情怀应助加纳加纳乔采纳,获得10
1秒前
郑光英发布了新的文献求助10
1秒前
leaf完成签到 ,获得积分10
1秒前
可爱的函函应助LDDD采纳,获得10
2秒前
老迟到的醉卉完成签到,获得积分10
2秒前
leaolf应助小丸子采纳,获得10
2秒前
愉快的夏青完成签到,获得积分10
3秒前
碳水大王完成签到,获得积分10
3秒前
温水完成签到,获得积分10
3秒前
三伏天发布了新的文献求助10
4秒前
Dr Niu应助顺利梦菡采纳,获得10
4秒前
6秒前
尊敬忆秋应助guozizi采纳,获得10
6秒前
7秒前
云魂完成签到,获得积分10
7秒前
马阡榕完成签到 ,获得积分10
7秒前
8秒前
半夜炒茄子完成签到,获得积分10
8秒前
李健应助wqmx2008采纳,获得10
8秒前
思源应助牧万万采纳,获得10
9秒前
9秒前
赘婿应助孤独的钢铁侠采纳,获得10
10秒前
李健的小迷弟应助LDDD采纳,获得10
10秒前
10秒前
科研通AI6应助喜悦的唇彩采纳,获得10
10秒前
11秒前
11秒前
11秒前
旺帮主完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
leezz发布了新的文献求助30
12秒前
15987完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355