碳化
材料科学
硫化
异质结
锂(药物)
石墨烯
储能
纳米技术
沸石咪唑盐骨架
电化学
电极
复合材料
金属有机骨架
光电子学
硫黄
冶金
扫描电子显微镜
功率(物理)
物理
医学
化学
有机化学
吸附
量子力学
物理化学
内分泌学
作者
Junfan Zhang,Chunhao Sun,Shuangquan Qu,Mengmeng Qian,Wei Zhan,Anqi Su,Kai Zhang,Qi Liu,Ruiwen Shao,Jing Wang,Yuefeng Su,Jia‐Qi Huang,Feng Wu,Guoqiang Tan
出处
期刊:Nano Energy
[Elsevier]
日期:2023-03-31
卷期号:111: 108401-108401
被引量:15
标识
DOI:10.1016/j.nanoen.2023.108401
摘要
Enhancing electrochemical activity and structural stability of transition metal sulfides (TMSs) are critical for improving the capacity output and retention of TMSs-based batteries. Here, we report a new paradigmatic approach for fabricating TMSs/C composites, adopting a metallothermic-sulfidation-carbonization strategy (2TM + CS2 = 2TMS + C) based on zeolitic imidazolate frameworks (ZIFs) to synchronously construct a compact [email protected]/CNx triple heterostructure. The obtained structure features crystalline TMSs nanoparticles wrapped by few-layer graphene and totally embedded within porous carbonized polyhedral frameworks. All three nanocomponents of [email protected]/CNx are connected via chemical bonding of S−C and TM−C, forming a chemical cross-linked nanostructure. Such structure design bears intrinsic advantages in improving the volumetric-efficiency for accommodating TMSs and electrical properties, enabling promising electrochemical performance in lithium- and sodium-ion storage. As a representative, the [email protected]/CNx electrode exhibits a high capacity of 891.5 mAh g−1 and an excellent retention of 80 % after 1000 cycles in lithium-ion batteries. More notably, this general metallothermic-sulfidation-carbonization mechanism can be applicable to all ZIFs, defining a new ZIFs-derived TMSs/C heterostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI