NFIG-X: Nonlinear Fuzzy Information Granule Series for Long-Term Traffic Flow Time-Series Forecasting

计算机科学 非线性系统 时间序列 预处理器 期限(时间) 系列(地层学) 模糊逻辑 数据挖掘 滑动窗口协议 算法 人工智能 机器学习 物理 操作系统 古生物学 生物 量子力学 窗口(计算)
作者
Yue Cheng,Weiwei Xing,Witold Pedrycz,Sidong Xian,Weibin Liu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (10): 3582-3597 被引量:2
标识
DOI:10.1109/tfuzz.2023.3261893
摘要

Long-term time-series forecasting is an extensive research topic and is of great significance in many fields. However, the task of long-term time-series forecasting is accompanied by the problem of increasing cumulative error and decreasing time correlation. To overcome these shortcomings, this article proposes a prediction framework based on the nonlinear fuzzy information granule (NFIG) series, which can boost the long-term performance of most predictors. First, we propose the representation of the NFIG for the first time, replacing the linear core lines with nonlinear time-dependent curves. Second, we propose a temporal window splitting algorithm based on curvature equations and weighted directed graphs, which can not only merge temporal windows with the same trend but also cointegrate incremental data. Finally, the nonlinear trend fuzzy granulation can be employed as a data preprocessing module for various time-series predictors to achieve a better long-term forecasting performance. As a typical time-series forecasting task, the precise long-term forecast of traffic flow data can relieve the overburdened traffic system and improve the traffic environment to a certain extent. Thus, the proposed method is employed for the long-term traffic flow forecasting. Compared with existing forecasting models, which achieves superior performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顶刊我来了完成签到,获得积分10
刚刚
搜集达人应助果汁采纳,获得10
1秒前
1秒前
Hover发布了新的文献求助10
1秒前
传奇3应助mirror采纳,获得30
1秒前
yaqin@9909发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
星辰完成签到,获得积分10
3秒前
NK001完成签到,获得积分10
3秒前
缘起缘灭完成签到,获得积分10
4秒前
CipherSage应助萌道采纳,获得10
4秒前
4秒前
天衍四九完成签到,获得积分10
4秒前
北极熊不吃牙膏完成签到,获得积分10
5秒前
balmy完成签到 ,获得积分10
5秒前
5秒前
Mid发布了新的文献求助20
6秒前
6秒前
春夏秋冬发布了新的文献求助10
6秒前
古怪小枫给古怪小枫的求助进行了留言
6秒前
笨笨芯完成签到,获得积分20
7秒前
阿伟爱打球完成签到,获得积分10
7秒前
林上草应助潦草采纳,获得10
8秒前
8秒前
ding应助星星采纳,获得10
8秒前
摆烂王子发布了新的文献求助10
8秒前
小文完成签到,获得积分20
8秒前
Yimi完成签到,获得积分10
9秒前
小巧凝丹完成签到,获得积分10
9秒前
9秒前
10秒前
善良过客完成签到,获得积分10
10秒前
贪玩的宛凝完成签到,获得积分10
10秒前
11秒前
12秒前
倔强的大萝卜完成签到,获得积分0
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759