热导率
非谐性
声子
材料科学
凝聚态物理
剪切模量
格子(音乐)
结晶学
物理
热力学
化学
声学
作者
Yu Xiao,Cheng Chang,Yanling Pei,Di Wu,Kunling Peng,Xiaoyuan Zhou,Shengkai Gong,Jiaqing He,Yongsheng Zhang,Zhi Zeng,Li‐Dong Zhao
出处
期刊:Physical review
日期:2016-09-12
卷期号:94 (12)
被引量:328
标识
DOI:10.1103/physrevb.94.125203
摘要
We provide direct evidence to understand the origin of low thermal conductivity of SnSe using elastic measurements. Compared to state-of-the-art lead chalcogenides $\mathrm{Pb}Q(Q=\mathrm{Te}$, Se, S), SnSe exhibits low values of sound velocity $(\ensuremath{\sim}1420\phantom{\rule{0.28em}{0ex}}\mathrm{m}/\mathrm{s})$, Young's modulus $(E\ensuremath{\sim}27.7\phantom{\rule{0.28em}{0ex}}\mathrm{GPa})$, and shear modulus $(G\ensuremath{\sim}9.6\phantom{\rule{0.28em}{0ex}}\mathrm{GPa})$, which are ascribed to the extremely weak Sn-Se atomic interactions (or bonds between layers); meanwhile, the deduced average Gr\"uneisen parameter \ensuremath{\gamma} of SnSe is as large as \ensuremath{\sim}3.13, originating from the strong anharmonicity of the bonding arrangement. The calculated phonon mean free path (l \ensuremath{\sim} 0.84 nm) at 300 K is comparable to the lattice parameters of SnSe, indicating little room is left for further reduction of the thermal conductivity through introducing nanoscale microstructures and microscale grain boundaries. The low elastic properties indicate that the weak chemical bonding stiffness of SnSe generally causes phonon modes softening which eventually slows down phonon propagation. This work provides insightful data to understand the low lattice thermal conductivity of SnSe.
科研通智能强力驱动
Strongly Powered by AbleSci AI