Metal Artifact Reduction in CT: Where Are We After Four Decades?

计算机科学 迭代重建 分类 图像质量 人工智能 计算机视觉 工件(错误) 软件 投影(关系代数) 对象(语法) 图像处理 过程(计算) 可视化 图像(数学) 算法 程序设计语言 操作系统
作者
Lars Gjesteby,Bruno De Man,Yannan Jin,Harald Paganetti,J Verburg,D Giantsoudi,Ge Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:4: 5826-5849 被引量:231
标识
DOI:10.1109/access.2016.2608621
摘要

Methods to overcome metal artifacts in computed tomography (CT) images have been researched and developed for nearly 40 years. When X-rays pass through a metal object, depending on its size and density, different physical effects will negatively affect the measurements, most notably beam hardening, scatter, noise, and the non-linear partial volume effect. These phenomena severely degrade image quality and hinder the diagnostic power and treatment outcomes in many clinical applications. In this paper, we first review the fundamental causes of metal artifacts, categorize metal object types, and present recent trends in the CT metal artifact reduction (MAR) literature. To improve image quality and recover information about underlying structures, many methods and correction algorithms have been proposed and tested. We comprehensively review and categorize these methods into six different classes of MAR: metal implant optimization, improvements to the data acquisition process, data correction based on physics models, modifications to the reconstruction algorithm (projection completion and iterative reconstruction), and image-based post-processing. The primary goals of this paper are to identify the strengths and limitations of individual MAR methods and overall classes, and establish a relationship between types of metal objects and the classes that most effectively overcome their artifacts. The main challenges for the field of MAR continue to be cases with large, dense metal implants, as well as cases with multiple metal objects in the field of view. Severe photon starvation is difficult to compensate for with only software corrections. Hence, the future of MAR seems to be headed toward a combined approach of improving the acquisition process with dual-energy CT, higher energy X-rays, or photon-counting detectors, along with advanced reconstruction approaches. Additional outlooks are addressed, including the need for a standardized evaluation system to compare MAR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的人龙完成签到,获得积分10
刚刚
稚初完成签到,获得积分10
刚刚
tommyliu完成签到,获得积分10
刚刚
刚刚
aaaaaa发布了新的文献求助10
刚刚
刚刚
搜集达人应助mimi采纳,获得10
1秒前
学术小菜鸟完成签到 ,获得积分10
1秒前
1秒前
真实的俊驰完成签到,获得积分10
1秒前
平淡的蜻蜓完成签到,获得积分10
2秒前
2秒前
Vii应助宋宋宋2采纳,获得10
3秒前
胡天萌发布了新的文献求助10
4秒前
Grinder完成签到 ,获得积分10
5秒前
MADKAI发布了新的文献求助20
5秒前
圆滑的铁勺完成签到,获得积分10
6秒前
6秒前
6秒前
zhangting完成签到,获得积分10
7秒前
AAAAAAAAAAA完成签到,获得积分10
7秒前
vvvvvvv完成签到,获得积分10
7秒前
7秒前
wanyanjin应助1111采纳,获得10
7秒前
gaos发布了新的文献求助10
8秒前
小吴完成签到,获得积分10
9秒前
迟大猫应助Star1983采纳,获得10
9秒前
chinning完成签到,获得积分10
10秒前
Mon_zh发布了新的文献求助20
10秒前
10秒前
漂亮送终完成签到,获得积分10
10秒前
朴素篮球发布了新的文献求助10
11秒前
天才完成签到 ,获得积分10
11秒前
不喝可乐发布了新的文献求助10
11秒前
12秒前
皮尤尤发布了新的文献求助10
12秒前
13秒前
道中道完成签到,获得积分10
14秒前
14秒前
知之然完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678