Metal Artifact Reduction in CT: Where Are We After Four Decades?

计算机科学 迭代重建 分类 图像质量 人工智能 计算机视觉 工件(错误) 软件 投影(关系代数) 对象(语法) 图像处理 过程(计算) 可视化 图像(数学) 算法 程序设计语言 操作系统
作者
Lars Gjesteby,Bruno De Man,Yannan Jin,Harald Paganetti,J Verburg,D Giantsoudi,Ge Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:4: 5826-5849 被引量:206
标识
DOI:10.1109/access.2016.2608621
摘要

Methods to overcome metal artifacts in computed tomography (CT) images have been researched and developed for nearly 40 years. When X-rays pass through a metal object, depending on its size and density, different physical effects will negatively affect the measurements, most notably beam hardening, scatter, noise, and the non-linear partial volume effect. These phenomena severely degrade image quality and hinder the diagnostic power and treatment outcomes in many clinical applications. In this paper, we first review the fundamental causes of metal artifacts, categorize metal object types, and present recent trends in the CT metal artifact reduction (MAR) literature. To improve image quality and recover information about underlying structures, many methods and correction algorithms have been proposed and tested. We comprehensively review and categorize these methods into six different classes of MAR: metal implant optimization, improvements to the data acquisition process, data correction based on physics models, modifications to the reconstruction algorithm (projection completion and iterative reconstruction), and image-based post-processing. The primary goals of this paper are to identify the strengths and limitations of individual MAR methods and overall classes, and establish a relationship between types of metal objects and the classes that most effectively overcome their artifacts. The main challenges for the field of MAR continue to be cases with large, dense metal implants, as well as cases with multiple metal objects in the field of view. Severe photon starvation is difficult to compensate for with only software corrections. Hence, the future of MAR seems to be headed toward a combined approach of improving the acquisition process with dual-energy CT, higher energy X-rays, or photon-counting detectors, along with advanced reconstruction approaches. Additional outlooks are addressed, including the need for a standardized evaluation system to compare MAR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后的穆完成签到 ,获得积分10
刚刚
臭皮完成签到,获得积分10
1秒前
刘珍荣完成签到,获得积分10
2秒前
2秒前
2秒前
宋芝恬完成签到,获得积分10
3秒前
老肖发布了新的文献求助10
3秒前
陈文学完成签到,获得积分10
3秒前
奔跑的蒲公英完成签到,获得积分10
5秒前
Steven发布了新的文献求助10
5秒前
感动清炎完成签到,获得积分10
5秒前
minibearQ完成签到,获得积分10
6秒前
7秒前
格格巫完成签到,获得积分10
7秒前
给你做个pet完成签到 ,获得积分10
8秒前
V_I_G完成签到,获得积分10
9秒前
司徒子默完成签到,获得积分10
9秒前
漂洋过海咖啡豆完成签到,获得积分10
9秒前
9秒前
米花完成签到 ,获得积分10
10秒前
jcduoduo完成签到,获得积分10
11秒前
Ivy完成签到,获得积分10
11秒前
简单的白云完成签到,获得积分10
12秒前
湛湛蓝完成签到,获得积分10
13秒前
Novice6354完成签到 ,获得积分10
13秒前
minifox完成签到,获得积分10
14秒前
biubiu完成签到,获得积分10
14秒前
希望天下0贩的0应助叶子采纳,获得20
15秒前
杨榆藤完成签到,获得积分10
15秒前
FF完成签到,获得积分10
15秒前
Eva完成签到,获得积分10
15秒前
超级小飞侠完成签到 ,获得积分10
16秒前
Roach完成签到,获得积分10
17秒前
单细胞完成签到 ,获得积分0
17秒前
乐乐应助可研采纳,获得10
18秒前
21秒前
bigger.b完成签到,获得积分10
21秒前
cdu应助是问采纳,获得10
22秒前
躺平girl完成签到,获得积分10
22秒前
天天小女孩完成签到 ,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784918
关于积分的说明 7769341
捐赠科研通 2440444
什么是DOI,文献DOI怎么找? 1297415
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792