Metal Artifact Reduction in CT: Where Are We After Four Decades?

计算机科学 迭代重建 分类 图像质量 人工智能 计算机视觉 工件(错误) 软件 投影(关系代数) 对象(语法) 图像处理 过程(计算) 可视化 图像(数学) 算法 程序设计语言 操作系统
作者
Lars Gjesteby,Bruno De Man,Yannan Jin,Harald Paganetti,J Verburg,D Giantsoudi,Ge Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:4: 5826-5849 被引量:231
标识
DOI:10.1109/access.2016.2608621
摘要

Methods to overcome metal artifacts in computed tomography (CT) images have been researched and developed for nearly 40 years. When X-rays pass through a metal object, depending on its size and density, different physical effects will negatively affect the measurements, most notably beam hardening, scatter, noise, and the non-linear partial volume effect. These phenomena severely degrade image quality and hinder the diagnostic power and treatment outcomes in many clinical applications. In this paper, we first review the fundamental causes of metal artifacts, categorize metal object types, and present recent trends in the CT metal artifact reduction (MAR) literature. To improve image quality and recover information about underlying structures, many methods and correction algorithms have been proposed and tested. We comprehensively review and categorize these methods into six different classes of MAR: metal implant optimization, improvements to the data acquisition process, data correction based on physics models, modifications to the reconstruction algorithm (projection completion and iterative reconstruction), and image-based post-processing. The primary goals of this paper are to identify the strengths and limitations of individual MAR methods and overall classes, and establish a relationship between types of metal objects and the classes that most effectively overcome their artifacts. The main challenges for the field of MAR continue to be cases with large, dense metal implants, as well as cases with multiple metal objects in the field of view. Severe photon starvation is difficult to compensate for with only software corrections. Hence, the future of MAR seems to be headed toward a combined approach of improving the acquisition process with dual-energy CT, higher energy X-rays, or photon-counting detectors, along with advanced reconstruction approaches. Additional outlooks are addressed, including the need for a standardized evaluation system to compare MAR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英吉利25发布了新的文献求助30
刚刚
刚刚
震动的乐天完成签到,获得积分10
1秒前
Rwslpy完成签到 ,获得积分10
1秒前
bmyy完成签到,获得积分10
2秒前
PL发布了新的文献求助10
2秒前
3秒前
酷炫的毛巾应助苹果板栗采纳,获得10
3秒前
5秒前
人间生巧完成签到,获得积分10
5秒前
7秒前
KKKZ发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
汉堡包应助陈艺鹏采纳,获得10
9秒前
接好运完成签到,获得积分10
10秒前
星辰大海应助清秀的曼青采纳,获得10
10秒前
10秒前
CodeCraft应助美味的薯片采纳,获得10
12秒前
HYHX发布了新的文献求助10
12秒前
林八八发布了新的文献求助10
12秒前
不挤牙膏发布了新的文献求助10
13秒前
13秒前
山楂发布了新的文献求助10
13秒前
无算浮白发布了新的文献求助10
14秒前
Jasper应助董晴采纳,获得10
15秒前
春风不语完成签到 ,获得积分10
16秒前
16秒前
19秒前
苗条的紫文完成签到 ,获得积分10
19秒前
asf完成签到,获得积分10
20秒前
英吉利25发布了新的文献求助10
20秒前
21秒前
22秒前
风止完成签到 ,获得积分10
22秒前
JamesPei应助zozo采纳,获得10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070