Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella

生物 肠沙门氏菌 细胞内 沙门氏菌 巨噬细胞极化 免疫系统 微生物学 细胞生物学 单细胞分析 病菌 巨噬细胞 细菌 细胞 细胞内寄生虫 遗传学 体外
作者
Antoine‐Emmanuel Saliba,Lei Li,Alexander J. Westermann,Silke Appenzeller,Daphne A. C. Stapels,Leon N. Schulte,Sophie Hélaine,Jörg Vogel
出处
期刊:Nature microbiology [Nature Portfolio]
卷期号:2 (2) 被引量:179
标识
DOI:10.1038/nmicrobiol.2016.206
摘要

Intracellular bacterial pathogens can exhibit large heterogeneity in growth rate inside host cells, with major consequences for the infection outcome. If and how the host responds to this heterogeneity remains poorly understood. Here, we combined a fluorescent reporter of bacterial cell division with single-cell RNA-sequencing analysis to study the macrophage response to different intracellular states of the model pathogen Salmonella enterica serovar Typhimurium. The transcriptomes of individual infected macrophages revealed a spectrum of functional host response states to growing and non-growing bacteria. Intriguingly, macrophages harbouring non-growing Salmonella display hallmarks of the proinflammatory M1 polarization state and differ little from bystander cells, suggesting that non-growing bacteria evade recognition by intracellular immune receptors. By contrast, macrophages containing growing bacteria have turned into an anti-inflammatory, M2-like state, as if fast-growing intracellular Salmonella overcome host defence by reprogramming macrophage polarization. Additionally, our clustering approach reveals intermediate host functional states between these extremes. Altogether, our data suggest that gene expression variability in infected host cells shapes different cellular environments, some of which may favour a growth arrest of Salmonella facilitating immune evasion and the establishment of a long-term niche, while others allow Salmonella to escape intracellular antimicrobial activity and proliferate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助vantie采纳,获得10
1秒前
xixi完成签到,获得积分20
1秒前
缓慢平蓝完成签到,获得积分10
1秒前
hahasun完成签到,获得积分10
2秒前
3秒前
3秒前
mgg完成签到,获得积分10
4秒前
4秒前
科研通AI5应助任嘉炜采纳,获得30
4秒前
5秒前
勤奋念桃完成签到,获得积分10
5秒前
ceeray23应助lvliang采纳,获得10
6秒前
6秒前
完美世界应助欢呼芒果采纳,获得10
7秒前
7秒前
小鱼儿完成签到,获得积分10
8秒前
yangyajie发布了新的文献求助10
9秒前
Willow完成签到,获得积分10
9秒前
muzi发布了新的文献求助10
10秒前
六尺巷发布了新的文献求助10
10秒前
Owen应助瞿寒采纳,获得30
11秒前
11秒前
儒雅源智完成签到,获得积分10
11秒前
12秒前
赵怼怼完成签到 ,获得积分10
12秒前
里lilili完成签到,获得积分10
12秒前
陶渊明发布了新的文献求助30
12秒前
英姑应助Ruiruirui采纳,获得10
12秒前
hhhhhhh啦啦发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
充电宝应助Aries采纳,获得10
16秒前
小蘑菇应助yk采纳,获得10
16秒前
Raiden发布了新的文献求助20
16秒前
18秒前
李白发布了新的文献求助10
19秒前
路痴完成签到,获得积分10
19秒前
20秒前
科yt完成签到,获得积分10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427