Multi-objective co-operative co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems

碳足迹 足迹 水准点(测量) 计算机科学 机器人 帕累托原理 直线(几何图形) 集合(抽象数据类型) 进化算法 数学优化 边距(机器学习) 多目标优化 生态足迹 算法 可持续发展 温室气体 人工智能 机器学习 数学 生态学 几何学 地理 法学 程序设计语言 大地测量学 政治学 古生物学 生物
作者
Mukund Nilakantan Janardhanan,Zixiang Li,Qiuhua Tang,Peter Nielsen
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:156: 124-136 被引量:70
标识
DOI:10.1016/j.jclepro.2017.04.032
摘要

Methods for reducing the carbon footprint is receiving increasing attention from industry as they work to create sustainable products. Assembly line systems are widely utilized to assemble different types of products and in recent years, robots have become extensively utilized, replacing manual labor. This paper focuses on minimizing the carbon footprint for robotic assembly line systems, a topic that has received limited attention in academia. This paper is primarily focused on developing a mathematical model to simultaneously minimize the total carbon footprint and maximize the efficiency of robotic assembly line systems. Due to the NP-hard nature of the considered problem, a multi-objective co-operative co-evolutionary (MOCC) algorithm is developed to solve it. Several improvements are applied to enhance the performance of the MOCC for obtaining a strong local search capacity and faster search speed. The performance of the proposed MOCC algorithm is compared with three other high-performing multi-objective methods. Computational and statistical results from the set of benchmark problems show that the proposed model can reduce the carbon footprint effectively. The proposed MOCC outperforms the other three methods by a significant margin as shown by utilizing one graphical and two quantitative Pareto compliant indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卑微求文献999完成签到 ,获得积分20
刚刚
3秒前
卑微求文献999关注了科研通微信公众号
3秒前
华仔应助Sophist采纳,获得10
3秒前
Adalwolf完成签到,获得积分10
4秒前
6秒前
chen完成签到 ,获得积分10
9秒前
hgl发布了新的文献求助10
9秒前
华仔应助racill采纳,获得30
10秒前
Orange应助111采纳,获得10
10秒前
斯文败类应助大力蚂蚁采纳,获得10
13秒前
乌龟发布了新的文献求助10
13秒前
15秒前
18秒前
可爱的函函应助Steven采纳,获得10
19秒前
20秒前
七一琦发布了新的文献求助10
20秒前
21秒前
22秒前
奋斗忆南发布了新的文献求助10
22秒前
领导范儿应助徐哈哈采纳,获得10
23秒前
澜聴发布了新的文献求助10
24秒前
24秒前
24秒前
fjy666完成签到,获得积分10
24秒前
26秒前
叶绿体发布了新的文献求助10
27秒前
AixGnad发布了新的文献求助10
28秒前
28秒前
orixero应助空得空的空地采纳,获得30
29秒前
111发布了新的文献求助10
29秒前
活力成败完成签到,获得积分10
29秒前
zzyyy发布了新的文献求助10
30秒前
澜聴完成签到,获得积分10
31秒前
33秒前
Xwu发布了新的文献求助20
33秒前
33秒前
Liufgui应助Steven采纳,获得10
34秒前
35秒前
落寞凌波应助zzyyy采纳,获得10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998925
求助须知:如何正确求助?哪些是违规求助? 3538424
关于积分的说明 11274205
捐赠科研通 3277345
什么是DOI,文献DOI怎么找? 1807518
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075