重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Fusion of Landsat 8 OLI and Sentinel-2 MSI Data

遥感 全色胶片 多光谱图像 卫星 传感器融合 图像分辨率 环境科学 土地覆盖 光谱带 专题制图器 卫星图像 地质学 计算机科学 土地利用 人工智能 工程类 航空航天工程 土木工程
作者
Qunming Wang,George Alan Blackburn,Alex O. Onojeghuo,Jadunandan Dash,Lingquan Zhou,Yihang Zhang,Peter M. Atkinson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (7): 3885-3899 被引量:146
标识
DOI:10.1109/tgrs.2017.2683444
摘要

Sentinel-2 is a wide-swath and fine spatial resolution satellite imaging mission designed for data continuity and enhancement of the Landsat and other missions. The Sentinel-2 data are freely available at the global scale, and have similar wavelengths and the same geographic coordinate system as the Landsat data, which provides an excellent opportunity to fuse these two types of satellite sensor data together. In this paper, a new approach is presented for the fusion of Landsat 8 Operational Land Imager and Sentinel-2 Multispectral Imager data to coordinate their spatial resolutions for continuous global monitoring. The 30 m spatial resolution Landsat 8 bands are downscaled to 10 m using available 10 m Sentinel-2 bands. To account for the land-cover/land-use (LCLU) changes that may have occurred between the Landsat 8 and Sentinel-2 images, the Landsat 8 panchromatic (PAN) band was also incorporated in the fusion process. The experimental results showed that the proposed approach is effective for fusing Landsat 8 with Sentinel-2 data, and the use of the PAN band can decrease the errors introduced by LCLU changes. By fusion of Landsat 8 and Sentinel-2 data, more frequent observations can be produced for continuous monitoring (this is particularly valuable for areas that can be covered easily by clouds, thereby, contaminating some Landsat or Sentinel-2 observations), and the observations are at a consistent fine spatial resolution of 10 m. The products have great potential for timely monitoring of rapid changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
么嗷苗发布了新的文献求助10
刚刚
风吹麦田应助zqc333采纳,获得30
1秒前
小小蚂蚁完成签到,获得积分10
1秒前
oasis完成签到,获得积分10
1秒前
1秒前
大个应助高高的钢铁侠采纳,获得10
1秒前
科研通AI6应助韓小慧采纳,获得10
2秒前
liuxinying完成签到,获得积分10
2秒前
zjujirenjie发布了新的文献求助10
2秒前
Vicee完成签到,获得积分10
2秒前
3秒前
葛洪成完成签到,获得积分20
3秒前
YYC发布了新的文献求助10
3秒前
Lucas应助甜蜜乐松采纳,获得10
3秒前
miumiu完成签到,获得积分10
3秒前
冲绳巨人完成签到,获得积分10
4秒前
蚊蚊爱读书应助蕯匿采纳,获得10
4秒前
4秒前
浪子完成签到,获得积分10
4秒前
蛋蛋完成签到,获得积分20
5秒前
大模型应助李佳洲采纳,获得10
5秒前
pahuang发布了新的文献求助50
5秒前
TYMX完成签到,获得积分10
6秒前
6秒前
友好板栗发布了新的文献求助10
6秒前
梅子酒发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
好运6连发布了新的文献求助10
9秒前
miumiu发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
可耐的Gamma完成签到,获得积分10
11秒前
12秒前
13秒前
小小鱼完成签到,获得积分10
13秒前
搜集达人应助Balance Man采纳,获得10
13秒前
奈斯发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516