Fusion of Landsat 8 OLI and Sentinel-2 MSI Data

遥感 全色胶片 多光谱图像 卫星 传感器融合 图像分辨率 环境科学 土地覆盖 光谱带 专题制图器 卫星图像 地质学 计算机科学 土地利用 人工智能 工程类 航空航天工程 土木工程
作者
Qunming Wang,George Alan Blackburn,Alex O. Onojeghuo,Jadunandan Dash,Lingquan Zhou,Yihang Zhang,Peter M. Atkinson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (7): 3885-3899 被引量:146
标识
DOI:10.1109/tgrs.2017.2683444
摘要

Sentinel-2 is a wide-swath and fine spatial resolution satellite imaging mission designed for data continuity and enhancement of the Landsat and other missions. The Sentinel-2 data are freely available at the global scale, and have similar wavelengths and the same geographic coordinate system as the Landsat data, which provides an excellent opportunity to fuse these two types of satellite sensor data together. In this paper, a new approach is presented for the fusion of Landsat 8 Operational Land Imager and Sentinel-2 Multispectral Imager data to coordinate their spatial resolutions for continuous global monitoring. The 30 m spatial resolution Landsat 8 bands are downscaled to 10 m using available 10 m Sentinel-2 bands. To account for the land-cover/land-use (LCLU) changes that may have occurred between the Landsat 8 and Sentinel-2 images, the Landsat 8 panchromatic (PAN) band was also incorporated in the fusion process. The experimental results showed that the proposed approach is effective for fusing Landsat 8 with Sentinel-2 data, and the use of the PAN band can decrease the errors introduced by LCLU changes. By fusion of Landsat 8 and Sentinel-2 data, more frequent observations can be produced for continuous monitoring (this is particularly valuable for areas that can be covered easily by clouds, thereby, contaminating some Landsat or Sentinel-2 observations), and the observations are at a consistent fine spatial resolution of 10 m. The products have great potential for timely monitoring of rapid changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得30
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
wkjfh应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
爆米花应助hh采纳,获得10
3秒前
打打应助爱听歌土豆采纳,获得10
3秒前
打打应助阿帆采纳,获得10
4秒前
LY_Qin应助花花采纳,获得10
4秒前
5秒前
yhx完成签到,获得积分10
5秒前
情怀应助upward采纳,获得10
6秒前
6秒前
liu发布了新的文献求助10
6秒前
delect完成签到,获得积分10
6秒前
8秒前
陶渊明完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
jphu完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
鲁班七号完成签到,获得积分10
11秒前
好好发布了新的文献求助10
12秒前
毕业发布了新的文献求助10
12秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427