Revealling the Structure of Catalyst for Diameter and Chirality Selective Growth of Single-Walled Carbon Nanotube Directly on SiO2

碳纳米管 催化作用 材料科学 选区衍射 纳米技术 手性(物理) 基质(水族馆) 电子衍射 化学气相沉积 化学工程 外延 衍射 结晶学 透射电子显微镜 化学 光学 有机化学 手征对称破缺 物理 海洋学 工程类 图层(电子) 量子力学 夸克 地质学 Nambu–Jona Lasinio模型
作者
Rong Xiang,Akihito Kumamoto,Hua An,Yuichi Ikuhara,Shigeo Maruyama
出处
期刊:Meeting abstracts 卷期号:MA2017-01 (9): 652-652
标识
DOI:10.1149/ma2017-01/9/652
摘要

Here we present our recent progress on controlled growth of single-walled carbon nanotubes (SWNTs) by our alcohol catalytic chemical vapor deposition (ACCVD),[1] and a technique for revealling the structure of catalyst directly on SiO2 film.[2] With Co-Cu binary catalyst, a novel combination recently proposed, we are able to synthesize vertically aligned (VA-) SWNTs with diameter tunable down to 1 nm, which is so far smallest for VA-SWNT arrays.[3] Chirality selective growth of SWNTs achieved in ACCVD from sputtered Co-W catalyst. This sputtered Co-W catalyst is able to grow SWNTs uniformly on entire substrate with a (12,6) enrichment of 70%.[4] To clarify to growth mechanism in binary catalyst, we propose an in-plane TEM approach, which enables a direct characterization of catalyst particles with atomic resolutions on a MEMS-fabricated thin SiO2 film. Since no transfer or any post treatments are needed, the most original morphology is preserved. By this technique we confirm that, with the addition of Cu, much smaller Co particles form epitaxially on Cu and produce all sub-nm vertically aligned SWNTs. In Co-W, selective area electron diffraction (SAED) suggests an intermediate Co6W6C structure that is possibly associated with growth selectivity. High-angle annular dark-field imaging (HAADF) reveals the the junction between metallic W and Co-W. [1] S. Maruyama*, R. Kojima, Y. Miyauchi, S. Chiashi and M. Kohno, Chem. Phys. Lett., (2002), 360-3-4, 229-234. [2] R. Xiang, A. Kumamoto, Y. Ikuhara, S. Maruyama, et al., to be submitted. [3] K. Cui, A. Kumamoto, R. Xiang, H. An, B. Wang, T. Inoue, S. Chiashi,Y. Ikuhara, S. Maruyama*, Nanoscale, (2016), 8-3, 1608-1617. [4] H. An, A. Kumamoto, H. Takezaki, S. Ohyama, Y. Qian, T. Inoue, Y. Ikuhara, S. Chiashi, R. Xiang*, S. Maruyama*, Nanoscale, (2016), 8, 14523-14529. This work was supported by JSPS KAKENHI Grant Numbers JP25107002, JP15H05760, JP15K17984, and IRENA Project by JST-EC DG RTD, Strategic International Collaborative Research Program, SICORP. Part of this work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). We also acknowledge supports from Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by "Nanotechnology Platform" of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chipseagull完成签到 ,获得积分10
刚刚
冷静凌旋完成签到,获得积分10
1秒前
2秒前
哇哈完成签到 ,获得积分10
4秒前
5秒前
Tree_QD发布了新的文献求助10
7秒前
yzy完成签到,获得积分20
10秒前
ssk完成签到,获得积分10
12秒前
科研通AI6.2应助XS_QI采纳,获得10
16秒前
18秒前
阿靖完成签到,获得积分10
19秒前
666完成签到,获得积分20
20秒前
哈哈哈完成签到 ,获得积分10
21秒前
25秒前
666发布了新的文献求助10
25秒前
善学以致用应助蓝胖子采纳,获得10
28秒前
冷静完成签到,获得积分10
30秒前
Selonfer完成签到,获得积分10
30秒前
Adelinelili发布了新的文献求助30
31秒前
科研通AI6.1应助XS_QI采纳,获得10
32秒前
36秒前
春和小椰发布了新的文献求助10
40秒前
义气思雁完成签到 ,获得积分10
42秒前
Owen应助杨昭采纳,获得10
43秒前
48秒前
53秒前
桐桐应助大方鲂采纳,获得10
53秒前
烟花应助Tree_QD采纳,获得10
54秒前
55秒前
金闪闪完成签到 ,获得积分10
56秒前
2i完成签到 ,获得积分10
57秒前
mw发布了新的文献求助10
57秒前
与岁年完成签到 ,获得积分10
57秒前
JQB完成签到,获得积分10
59秒前
XS_QI发布了新的文献求助10
1分钟前
1分钟前
敬业乐群发布了新的文献求助10
1分钟前
朴实颤完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847516
求助须知:如何正确求助?哪些是违规求助? 6226943
关于积分的说明 15620380
捐赠科研通 4964176
什么是DOI,文献DOI怎么找? 2676458
邀请新用户注册赠送积分活动 1621027
关于科研通互助平台的介绍 1576958