A JAFROC study of nodule detection performance in CT images of a thorax acquired during PET/CT

接收机工作特性 成像体模 核医学 结核(地质) 放射科 模态(人机交互) 医学 计算机科学 人工智能 生物 内科学 古生物学
作者
John D. Thompson,Amy Wareing,Katy Szczepura,Sobhan Vinjamuri,Peter Hogg
出处
期刊:Radiography [Elsevier]
卷期号:23 (3): 191-196 被引量:1
标识
DOI:10.1016/j.radi.2017.03.001
摘要

Two types of CT images (modalities) are acquired in PET/CT: for attenuation correction (AC) and diagnosis. The purpose of the study was to compare nodule detection and localization performance between these two modalities.CT images, using both modalities, of an anthropomorphic chest phantom containing zero or more simulated spherical nodules of 5, 8, 10 and 12 mm diameters and contrasts -800, -630 and 100 HU were acquired. An observer performance study using nine observers interpreting 45 normal (zero nodules) images and 47 abnormal images (1-3 nodules; average 1.26) was conducted using the free-response receiver operating characteristic (FROC) paradigm. Data were analysed using an R software package implemented jackknife alternative FROC (JAFROC) analysis. Both empirical areas under the equally weighted AFROC curve (wAFROC) and under the highest rating inferred ROC (HR-ROC) curve were used as figures of merit (FOM). To control the probability of Type I error test alpha was set at 0.05.Nodule detection as measured by either FOM was significantly better on the diagnostic quality images (2nd modality), irrespective of the method of analysis, [reader averaged inter-modality wAFROC FOM difference = -0.07 (-0.11,-0.04); reader averaged inter-modality HR-ROC FOM difference = -0.05 (-0.09, -0.01)].Nodule detection was statistically worse on images acquired for AC; suggesting that images acquired for AC should not be used to evaluate pulmonary pathology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助美好斓采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
陈雨完成签到,获得积分10
1秒前
zyf完成签到,获得积分20
1秒前
xiaotiyang完成签到,获得积分10
2秒前
YYH发布了新的文献求助10
2秒前
淡淡大山发布了新的文献求助10
2秒前
靡靡之音发布了新的文献求助10
2秒前
小鸭子发布了新的文献求助10
2秒前
难过的念梦关注了科研通微信公众号
3秒前
科研民工完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
whf发布了新的文献求助10
4秒前
4秒前
冷水鱼发布了新的文献求助10
4秒前
Aurora完成签到 ,获得积分10
4秒前
111发布了新的文献求助10
4秒前
5秒前
5秒前
酷波er应助正在采纳,获得10
5秒前
5秒前
晨初发布了新的文献求助10
5秒前
mingxuan完成签到,获得积分10
5秒前
冰点完成签到,获得积分10
6秒前
6秒前
ZMl发布了新的文献求助10
6秒前
6秒前
紫色哀伤完成签到,获得积分10
7秒前
having发布了新的文献求助10
7秒前
顾矜应助飞鸿影下采纳,获得10
7秒前
Marksman497完成签到,获得积分10
7秒前
脆脆鲨发布了新的文献求助10
7秒前
9秒前
雪七完成签到,获得积分10
9秒前
飞鱼发布了新的文献求助10
10秒前
拉不不完成签到,获得积分10
10秒前
SKY完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423