Using the National Cancer Database for Outcomes Research

医学 癌症 情感(语言学) 数据库 计算机科学 心理学 沟通 内科学
作者
Daniel J. Boffa,Joshua E. Rosen,Katherine Mallin,Ashley Loomis,Greer Gay,Bryan E. Palis,Kathleen K. Thoburn,Donna M. Gress,Daniel P. McKellar,Lawrence N. Shulman,Matthew A. Facktor,David P. Winchester
出处
期刊:JAMA Oncology [American Medical Association]
卷期号:3 (12): 1722-1722 被引量:875
标识
DOI:10.1001/jamaoncol.2016.6905
摘要

Importance

The National Cancer Database (NCDB), a joint quality improvement initiative of the American College of Surgeons Commission on Cancer and the American Cancer Society, has created a shared research file that has changed the study of cancer care in the United States. A thorough understanding of the nuances, strengths, and limitations of the database by both readers and investigators is of critical importance. This review describes the use of the NCDB to study cancer care, with a focus on the advantages of using the database and important considerations that affect the interpretation of NCDB studies.

Observations

The NCDB is one of the largest cancer registries in the world and has rapidly become one of the most commonly used data resources to study the care of cancer in the United States. The NCDB paints a comprehensive picture of cancer care, including a number of less commonly available details that enable subtle nuances of treatment to be studied. On the other hand, several potentially important patient and treatment attributes are not collected in the NCDB, which may affect the extent to which comparisons can be adjusted. Finally, the NCDB has undergone several significant changes during the past decade that may affect its completeness and the types of available data.

Conclusions and Relevance

The NCDB offers a critically important perspective on cancer care in the United States. To capitalize on its strengths and adjust for its limitations, investigators and their audiences should familiarize themselves with the advantages and shortcomings of the NCDB, as well as its evolution over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
qq发布了新的文献求助10
2秒前
2秒前
2秒前
FAYE发布了新的文献求助10
3秒前
祁乾发布了新的文献求助10
4秒前
自然的珩完成签到,获得积分10
4秒前
七海之风完成签到,获得积分10
4秒前
5秒前
年轻的藏今完成签到,获得积分20
5秒前
斯文败类应助zhangxr采纳,获得10
5秒前
J_C_Van发布了新的文献求助10
6秒前
6秒前
6秒前
jerry1213发布了新的文献求助10
7秒前
liu11发布了新的文献求助30
8秒前
LightFu发布了新的文献求助10
8秒前
李健的小迷弟应助RPG采纳,获得10
8秒前
jessica发布了新的文献求助10
8秒前
8秒前
情怀应助qq采纳,获得10
8秒前
w7完成签到,获得积分10
8秒前
七海之风发布了新的文献求助10
9秒前
酷波er应助mmol采纳,获得10
10秒前
科研通AI2S应助啊凡采纳,获得10
10秒前
勤恳丹寒发布了新的文献求助10
10秒前
Stone完成签到,获得积分20
10秒前
自然的珩发布了新的文献求助10
11秒前
玩命的毛衣完成签到 ,获得积分10
11秒前
11秒前
小白菜发布了新的文献求助30
12秒前
14秒前
inshialla发布了新的文献求助10
14秒前
热心的寒松完成签到,获得积分20
15秒前
momo完成签到,获得积分10
15秒前
顺利涵菡发布了新的文献求助10
15秒前
bo发布了新的文献求助10
16秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542