Strain-sensitive upconversion for imaging biological forces (Conference Presentation)

光子上转换 纳米颗粒 材料科学 镧系元素 纳米技术 兴奋剂 分析化学(期刊) 化学 光电子学 离子 色谱法 有机化学
作者
Alice Lay,Michael D. Wisser,Yu Lin,Tarun C. Narayan,Michael Krieg,Ashwin C. Atre,Miriam B. Goodman,Jennifer A. Dionne
标识
DOI:10.1117/12.2239540
摘要

Nearly all diseases can be traced back to abnormal mechanotransduction, but few sensors can reliably measure biologically-relevant forces in vivo. Here, we investigate sub-25nm lanthanide-doped upconverting nanoparticles as novel optical force probes, which provide several biocompatible features: sharp emission peaks with near infrared illumination, a high signal-to-noise ratio, and photostability. To increase force sensitivity, we include d-metal doping in the nanoparticles; the d-metal siphons energy from the lanthanide ions with an efficiency that varies with pressure. We synthesize cubic-phase NaYF4: Er3+,Yb3+ nanoparticles doped with 0-5% Mn2+ and compress them in a hydrostatic environment using a diamond anvil cell. When illuminated at 980nm, the nanoparticles show sharp emission peaks centered at wavelengths of 522nm, 545nm, and 660nm. In 20nN increments, up to 700nN, the ratio of the red-to-green peaks in 0% Mn-doped nanoparticles increases by nearly 30%, resulting in a perceived color change from orange to red. In contrast, the 1% Mn-doped samples exhibit little color change but a large 40% decrease in upconversion intensity. In both cases, the red-to-green ratio varies linearly with strain and the optical properties are recoverable upon release. We further use atomic force microscopy to characterize optical responses at lower, pico-Newton to nano-Newton forces. To demonstrate in vivo imaging capabilities, we incubate C. elegans with nanoparticles dispersed in buffer solution (5mg/mL concentration) and image forces involved in digestion using confocal microscopy. Our nanoparticles provide a platform for the first, non-genetically-encoded in vivo force sensors, and we describe routes to increase their sensitivity to the single-pN range.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧达发布了新的文献求助10
刚刚
1秒前
zcydbttj2011完成签到 ,获得积分10
1秒前
健壮的花瓣完成签到 ,获得积分10
1秒前
kingwill应助北望采纳,获得20
2秒前
FK7完成签到,获得积分10
2秒前
害怕的擎宇完成签到,获得积分10
2秒前
来自DF的小白完成签到,获得积分10
2秒前
OKAY完成签到,获得积分0
2秒前
2秒前
有魅力的惜蕊完成签到,获得积分10
2秒前
xcxc完成签到,获得积分10
2秒前
晓晓完成签到,获得积分10
2秒前
qly完成签到,获得积分10
3秒前
研究啥完成签到,获得积分10
3秒前
欧阳静芙完成签到,获得积分10
3秒前
4秒前
Aiopr关注了科研通微信公众号
4秒前
九旁十五便士完成签到 ,获得积分10
4秒前
Maksjiem发布了新的文献求助10
5秒前
Zzz完成签到,获得积分10
5秒前
linnn发布了新的文献求助10
6秒前
SciGPT应助眯眯眼的沧海采纳,获得10
6秒前
易子完成签到 ,获得积分10
6秒前
轻松狗发布了新的文献求助10
6秒前
NexusExplorer应助tokyo采纳,获得10
6秒前
悦耳白山完成签到,获得积分20
6秒前
牛牛发布了新的文献求助10
6秒前
kean1943完成签到,获得积分10
7秒前
兴奋白枫完成签到,获得积分10
7秒前
小栩完成签到 ,获得积分10
7秒前
rearrangement完成签到,获得积分10
7秒前
小刘完成签到,获得积分10
7秒前
我主沉浮发布了新的文献求助10
8秒前
8秒前
无私的珩完成签到,获得积分10
8秒前
leon发布了新的文献求助10
8秒前
oldF发布了新的文献求助30
8秒前
诗图完成签到,获得积分10
8秒前
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484924
求助须知:如何正确求助?哪些是违规求助? 3073855
关于积分的说明 9133123
捐赠科研通 2765488
什么是DOI,文献DOI怎么找? 1517851
邀请新用户注册赠送积分活动 702385
科研通“疑难数据库(出版商)”最低求助积分说明 701237