材料科学
超细纤维
制作
陶瓷
复合材料
蜂巢
多孔性
导电体
测距
化学气相沉积
纳米技术
医学
电信
替代医学
病理
计算机科学
作者
Claudio Ferraro,Esther García‐Tuñón,Victoria G. Rocha,Suelen Barg,María Dolores Fariñas,Tomás Gómez Álvarez‐Arenas,Giorgio Sernicola,Finn Giuliani,Eduardo Saiz
标识
DOI:10.1002/adfm.201504051
摘要
The directional freezing of microfiber suspensions is used to assemble highly porous (porosities ranging between 92% and 98%) SiC networks. These networks exhibit a unique hierarchical architecture in which thin layers with honeycomb‐like structure and internal strut length in the order of 1–10 μm in size are aligned with an interlayer spacing ranging between 15 and 50 μm. The resulting structures exhibit strengths (up to 3 MPa) and stiffness (up to 0.3 GPa) that are higher than aerogels of similar density and comparable to other ceramic microlattices fabricated by vapor deposition. Furthermore, this wet processing technique allows the fabrication of large‐size samples that are stable at high temperature, with acoustic impedance that can be manipulated over one order of magnitude (0.03–0.3 MRayl), electrically conductive and with very low thermal conductivity. The approach can be extended to other ceramic materials and opens new opportunities for the fabrication of ultralight structures with unique mechanical and functional properties in practical dimensions.
科研通智能强力驱动
Strongly Powered by AbleSci AI